6 results on '"Luznik, L"'
Search Results
2. Immune dysfunction signatures predict outcomes and define checkpoint blockade-unresponsive microenvironments in acute myeloid leukemia.
- Author
-
Rutella S, Vadakekolathu J, Mazziotta F, Reeder S, Yau TO, Mukhopadhyay R, Dickins B, Altmann H, Kramer M, Knaus HA, Blazar BR, Radojcic V, Zeidner JF, Arruda A, Wang B, Abbas HA, Minden MD, Tasian SK, Bornhäuser M, Gojo I, and Luznik L
- Subjects
- Humans, Prognosis, Immunotherapy, Tumor Microenvironment, CD8-Positive T-Lymphocytes, Leukemia, Myeloid, Acute therapy, Leukemia, Myeloid, Acute drug therapy, Immune System Diseases
- Abstract
BackgroundImmune exhaustion and senescence are dominant dysfunctional states of effector T cells and major hurdles for the success of cancer immunotherapy. In the current study, we characterized how acute myeloid leukemia (AML) promotes the generation of senescent-like CD8+ T cells and whether they have prognostic relevance.METHODSWe analyzed NanoString, bulk RNA-Seq and single-cell RNA-Seq data from independent clinical cohorts comprising 1,896 patients treated with chemotherapy and/or immune checkpoint blockade (ICB).ResultsWe show that senescent-like bone marrow CD8+ T cells were impaired in killing autologous AML blasts and that their proportion negatively correlated with overall survival (OS). We defined what we believe to be new immune effector dysfunction (IED) signatures using 2 gene expression profiling platforms and reported that IED scores correlated with adverse-risk molecular lesions, stemness, and poor outcomes; these scores were a more powerful predictor of OS than 2017-ELN risk or leukemia stem cell (LSC17) scores. IED expression signatures also identified an ICB-unresponsive tumor microenvironment and predicted significantly shorter OS.ConclusionThe IED scores provided improved AML-risk stratification and could facilitate the delivery of personalized immunotherapies to patients who are most likely to benefit.TRIAL REGISTRATIONClinicalTrials.gov; NCT02845297.FUNDINGJohn and Lucille van Geest Foundation, Nottingham Trent University's Health & Wellbeing Strategic Research Theme, NIH/NCI P01CA225618, Genentech-imCORE ML40354, Qatar National Research Fund (NPRP8-2297-3-494).
- Published
- 2022
- Full Text
- View/download PDF
3. Donor T cell DNMT3a regulates alloreactivity in mouse models of hematopoietic stem cell transplantation.
- Author
-
Ktena YP, Koldobskiy MA, Barbato MI, Fu HH, Luznik L, Llosa NJ, Haile A, Klein OR, Liu C, Gamper CJ, and Cooke KR
- Subjects
- Animals, Bone Marrow Transplantation methods, Mice, T-Lymphocytes, Transplantation, Homologous methods, Graft vs Host Disease genetics, Hematopoietic Stem Cell Transplantation
- Abstract
DNA methyltransferase 3a (DNMT3a) is an important part of the epigenetic machinery that stabilizes patterns of activated T cell responses. We hypothesized that donor T cell DNMT3a regulates alloreactivity after allogeneic blood and marrow transplantation (allo-BMT). T cell conditional Dnmt3a KO mice were used as donors in allo-BMT models. Mice receiving allo-BMT from KO donors developed severe acute graft-versus-host disease (aGVHD), with increases in inflammatory cytokine levels and organ histopathology scores. KO T cells migrated and proliferated in secondary lymphoid organs earlier and demonstrated an advantage in trafficking to the small intestine. Donor T cell subsets were purified after BMT for whole-genome bisulfite sequencing (WGBS) and RNA-Seq. KO T cells had global methylation similar to that of WT cells, with distinct, localized areas of hypomethylation. Using a highly sensitive computational method, we produced a comprehensive profile of the altered epigenome landscape. Hypomethylation corresponded with changes in gene expression in several pathways of T cell signaling and differentiation. Additionally, Dnmt3a-KO T cells resulted in superior graft-versus-tumor activity. Our findings demonstrate a critical role for DNMT3a in regulating T cell alloreactivity and reveal pathways that control T cell tolerance. These results also provide a platform for deciphering clinical data that associate donor DNMT3a mutations with increased GVHD, decreased relapse, and improved survival.
- Published
- 2022
- Full Text
- View/download PDF
4. Mechanism of action of posttransplantation cyclophosphamide: more than meets the eye.
- Author
-
Radojcic V and Luznik L
- Subjects
- Cyclophosphamide, Humans, Graft vs Host Disease, Hematologic Neoplasms, Hematopoietic Stem Cell Transplantation
- Abstract
For high-risk and refractory hematological malignancies, allogeneic hematopoietic stem cell transplantation (alloHSCT) is the only available curative therapy, with benefits derived from the antigenic disparity between recipient cancer and the incoming immune system. This immunologic mismatch can also lead to lethal graft-versus-host disease (GVHD), and immunosuppression strategies, including high-dose posttransplantation cyclophosphamide (PTCy), have been developed to allow for safe alloHSCT delivery. In this issue of JCI, Wachsmuth et al. present the results of preclinical studies designed to evaluate the mechanisms that underlie efficacy of PTCy after alloHSCT. The results of this study challenge previous reports indicating that alloreactive T cell elimination and thymic clonal deletion are primary mediators of PTCy efficacy and provide strong evidence to support FoxP3+CD4+ Tregs as important effectors of PTCy benefits.
- Published
- 2019
- Full Text
- View/download PDF
5. Short telomere syndromes cause a primary T cell immunodeficiency.
- Author
-
Wagner CL, Hanumanthu VS, Talbot CC Jr, Abraham RS, Hamm D, Gable DL, Kanakry CG, Applegate CD, Siliciano J, Jackson JB, Desiderio S, Alder JK, Luznik L, and Armanios M
- Subjects
- Adult, Aging genetics, Aging immunology, Aging pathology, Animals, Apoptosis genetics, DNA Damage immunology, Female, Humans, Male, Mice, Mice, Knockout, Primary Immunodeficiency Diseases, T-Lymphocytes immunology, T-Lymphocytes pathology, Apoptosis immunology, Growth Disorders complications, Growth Disorders genetics, Growth Disorders immunology, Growth Disorders pathology, Hypercalcemia complications, Hypercalcemia genetics, Hypercalcemia immunology, Hypercalcemia pathology, Immunologic Deficiency Syndromes etiology, Immunologic Deficiency Syndromes genetics, Metabolic Diseases complications, Metabolic Diseases genetics, Metabolic Diseases immunology, Metabolic Diseases pathology, Mutation, Nephrocalcinosis complications, Nephrocalcinosis genetics, Nephrocalcinosis immunology, Nephrocalcinosis pathology, Telomerase genetics, Telomerase immunology, Telomere Homeostasis immunology
- Abstract
The mechanisms that drive T cell aging are not understood. We report that children and adult telomerase mutation carriers with short telomere length (TL) develop a T cell immunodeficiency that can manifest in the absence of bone marrow failure and causes life-threatening opportunistic infections. Mutation carriers shared T cell-aging phenotypes seen in adults 5 decades older, including depleted naive T cells, increased apoptosis, and restricted T cell repertoire. T cell receptor excision circles (TRECs) were also undetectable or low, suggesting that newborn screening may identify individuals with germline telomere maintenance defects. Telomerase-null mice with short TL showed defects throughout T cell development, including increased apoptosis of stimulated thymocytes, their intrathymic precursors, in addition to depleted hematopoietic reserves. When we examined the transcriptional programs of T cells from telomerase mutation carriers, we found they diverged from older adults with normal TL. Short telomere T cells upregulated DNA damage and intrinsic apoptosis pathways, while older adult T cells upregulated extrinsic apoptosis pathways and programmed cell death 1 (PD-1) expression. T cells from mice with short TL also showed an active DNA-damage response, in contrast with old WT mice, despite their shared propensity to apoptosis. Our data suggest there are TL-dependent and TL-independent mechanisms that differentially contribute to distinct molecular programs of T cell apoptosis with aging.
- Published
- 2018
- Full Text
- View/download PDF
6. Ibrutinib treatment ameliorates murine chronic graft-versus-host disease.
- Author
-
Dubovsky JA, Flynn R, Du J, Harrington BK, Zhong Y, Kaffenberger B, Yang C, Towns WH, Lehman A, Johnson AJ, Muthusamy N, Devine SM, Jaglowski S, Serody JS, Murphy WJ, Munn DH, Luznik L, Hill GR, Wong HK, MacDonald KK, Maillard I, Koreth J, Elias L, Cutler C, Soiffer RJ, Antin JH, Ritz J, Panoskaltsis-Mortari A, Byrd JC, and Blazar BR
- Subjects
- Adenine analogs & derivatives, Animals, Disease-Free Survival, Drug Evaluation, Preclinical, Hematopoietic Stem Cell Transplantation adverse effects, Immunologic Factors therapeutic use, Lymphocyte Activation drug effects, Mice, Inbred C57BL, Piperidines, Pyrazoles therapeutic use, Pyrimidines therapeutic use, Graft vs Host Disease drug therapy, Immunologic Factors pharmacology, Pyrazoles pharmacology, Pyrimidines pharmacology
- Abstract
Chronic graft-versus-host disease (cGVHD) is a life-threatening impediment to allogeneic hematopoietic stem cell transplantation, and current therapies do not completely prevent and/or treat cGVHD. CD4+ T cells and B cells mediate cGVHD; therefore, targeting these populations may inhibit cGVHD pathogenesis. Ibrutinib is an FDA-approved irreversible inhibitor of Bruton's tyrosine kinase (BTK) and IL-2 inducible T cell kinase (ITK) that targets Th2 cells and B cells and produces durable remissions in B cell malignancies with minimal toxicity. Here, we evaluated whether ibrutinib could reverse established cGVHD in 2 complementary murine models, a model interrogating T cell-driven sclerodermatous cGVHD and an alloantibody-driven multiorgan system cGVHD model that induces bronchiolar obliterans (BO). In the T cell-mediated sclerodermatous cGVHD model, ibrutinib treatment delayed progression, improved survival, and ameliorated clinical and pathological manifestations. In the alloantibody-driven cGVHD model, ibrutinib treatment restored pulmonary function and reduced germinal center reactions and tissue immunoglobulin deposition. Animals lacking BTK and ITK did not develop cGVHD, indicating that these molecules are critical to cGVHD development. Furthermore, ibrutinib treatment reduced activation of T and B cells from patients with active cGVHD. Our data demonstrate that B cells and T cells drive cGVHD and suggest that ibrutinib has potential as a therapeutic agent, warranting consideration for cGVHD clinical trials.
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.