1. SeqPlus sequencing methodology enables robust whole-genome sequencing, true variant detection, and novel genomic insights from archival esophageal carcinoma FFPE samples
- Author
-
Shannon T. Bailey, Hongye Sun, Jeffery R Gulcher, Phil R. Taylor, Jim Lund, Nan Hu, Belynda Hicks, Richard T. Williams, Alisa M. Goldstein, Stephen J. Chanock, Kelly S. Oliner, and Bin Zhu
- Subjects
Whole genome sequencing ,Cancer Research ,Oncology ,business.industry ,Carcinoma ,medicine ,Computational biology ,medicine.disease ,business - Abstract
e13016 Background: Whole-genome sequencing (WGS) of formalin-fixed, paraffin-embedded (FFPE) samples could enable novel insights from archival sample collections, yet robust FFPE WGS is challenged by fragmented DNA, uneven genomic coverage & sequencing artifacts attributed to FFPE fixation. We report our proprietary extraction & library preparation methodology (SeqPlus) with high quality, uniform WGS sequencing performance comparable to that from fresh-frozen samples. Methods: We analyzed 20 paired esophageal carcinoma (EC) samples i.e., primary tumors & matched germline samples to assess SeqPlus performance on 10-15-year-old FFPE tissues, measure variant concordance between WGS and a high-depth sequencing panel (269 genes, 400x coverage) & identify novel genomic features. Results: At a targeted 70x WGS tumor sequencing depth, 93% of the genome was covered by ³ 20 reads, 99% of bases had 10x coverage & average duplicate reads were 31%. We noted similar transition/transversion ratios & mutational spectra as from fresh-frozen EC specimens, suggesting that extraction & library preparation contributes to prior FFPE artifacts. Concordance of tumor-specific SNVs & indels derived from WGS & targeted panel was high at 86%. All 76 targeted panel-detected variants above the WGS limit of detection (mutant allele frequency [MAF] > 10%) were detected by WGS, 2 variants (2 tumors) were detected only by WGS, and 12 variants at MAF ≤ 6% (9 tumors) were only detected by the targeted panel. Tumor WGS yielded SNV, indels & CNV findings beyond variants detected by targeted sequencing. WGS enabled detection of 10.4 putative cancer variants per tumor compared to 12 variants per patient from frozen specimens and a median of 7 (up to 16) cancer-associated variants in genes outside the targeted panel. WGS copy number analysis revealed CCND1, EGFR, TP63, and SOX2amplification, CDKN2A/B deletion and additional unrecognized genomic aberrations. Conclusions: Our study reinforces the utility of high-quality, uniform WGS sequencing of archival FFPE cancer samples with SeqPlus and unlocks the potential for massive-scale retrospective genomic analysis of archived pathology samples with associated clinical & outcomes data.
- Published
- 2019