1. A design of a fast pipelined modular multiplier based on a diminished-radix algorithm.
- Author
-
Orton, Glenn, Peppard, Lloyd, and Tavares, Stafford
- Abstract
We present a new serial-parallel concurrent modular-multiplication algorithm and architecture suitable for standard RSA encryption. In the new scheme, multiplication is performed modulo a multiple of the RSA modulus n, which has a diminished-radix form 2- v, where k and v are positive integers and v < n. This design is the first concurrent modular multiplier to use a diminished-radix algorithm and to pipeline concurrent modular-reduction to optimize the clock rate. For a modular multiplier of order ranging from 1 to 10 (number of multiplier bits per clock cycle), a faster clock rate and throughput is possible than with other known designs including those of Brickell, Morita, Sedlak and Golze, and Miyaguchi. Throughput estimates for 512-bit RSA decryption range from 100 kbit/s in a serial mode to 650 kbit/s with a modular multiplier of order 10, at a clock rate of 20 MHz on 1.5 μm CMOS. [ABSTRACT FROM AUTHOR]
- Published
- 1993
- Full Text
- View/download PDF