30 results on '"G Licitra"'
Search Results
2. Graduate Student Literature Review: History, technologies of production, and characteristics of ricotta cheese
- Author
-
G. Mangione, M. Caccamo, A. Natalello, and G. Licitra
- Subjects
ricotta cheese ,ricotta production ,analytical characteristics ,new trends ,Dairy processing. Dairy products ,SF250.5-275 ,Dairying ,SF221-250 - Abstract
ABSTRACT: This review focused on the historical, technological, and analytical characteristics of ricotta cheese available in the literature. Ricotta cheese is a typical dairy product that originated from Italy, used in the preparation of several traditional dishes, both sweet and salted. The available studies pertaining to ricotta cheese revealed a considerable biodiversity in the production with a large number of varieties produced, whose production varies according to the local uses and customs. The review shows the main chemical and microbial characteristics of the product and also the several parameters that affect the mechanism of the production process and the final characteristics of the product, including the raw materials, the processing methods, the season, the animals' diet, the animals' species, and breeds. Ricotta production can be artisanal or industrial, with differences in the making process. New trends in ricotta cheese production have been developed, with particular attention to the functional effect on human health and the novel technologies applied to extend the shelf-life of the products. Currently, it is not easy to find these new developments in the market, probably related to the cost of production, which is not always bearable by the farms. However, despite the large classification reported and the great interest by the cheese industry, just a few numbers of studies were found for artisanal ricotta productions, which still need to be characterized and studied.
- Published
- 2023
- Full Text
- View/download PDF
3. Characterization of artisanal saffron ricotta cheese produced in Sicily: Physicochemical, microbiological, sensory, and antioxidant characteristics.
- Author
-
Mangione G, Caccamo M, Marino VM, Marino G, and Licitra G
- Subjects
- Animals, Milk chemistry, Antioxidants analysis, Sicily, Cheese analysis, Crocus
- Abstract
The present study aims to characterize the artisanal saffron ricotta cheese produced from the whey of Piacentinu Ennese protected designation of origin (PDO) cheesemaking, including via technological parameters detected during the production process and by assessment of the main physicochemical, microbial, sensory, and antioxidant characteristics. A survey on the manufacture process of saffron and control ricotta cheese was conducted on 3 farms, located in the production area of the Piacentinu Ennese PDO cheese. pH and temperature followed a specific behavior, characterized by an inverse trend where pH decreased and temperature increased, playing an important role in the production process. All the analytical parameters were affected by the presence of saffron, also showing high between-farm variability, with significantly higher total solids and fat contents in saffron ricotta cheese compared with the control cheese (28.68% vs. 23.86%, and 19.83% vs. 14.22%, respectively). Microbial analysis showed significantly lower values in saffron compared with control ricotta cheese, for coliforms (1.51 vs. 1.91 log
10 cfu/g, respectively), yeasts (1.55 vs. 2.06 log10 cfu/g, respectively), and molds (1.03 vs. 1.30 log10 cfu/g, respectively), denoting potential reduction of microbial growth asserted by saffron. Escherichia coli concentration (1.26 log10 cfu/g) in saffron ricotta cheese was in accordance with EU Regulation 2073/2005 and then safe for consumption. The presence of saffron influenced all sensory attributes, particularly color and aroma. Interestingly, high total antioxidant activity was found in saffron ricotta cheese (372 µC) compared with the control cheese. Thus, this artisanal dairy production could be considered a suitable option for functional foods with antimicrobial properties, due to the presence of saffron, which may contribute to extend the shelf life of the product. Further studies need to focus on the bioactive compounds that affect the antioxidant proprieties, characterization of the microbiota of saffron ricotta cheese, and evaluation of consumers' acceptance and perception as well as market demand., (© 2023, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).)- Published
- 2023
- Full Text
- View/download PDF
4. Stage of lactation and corresponding diets affect in situ protein degradation by dairy cows.
- Author
-
Schadt I, Mertens DR, Van Soest PJ, Azzaro G, and Licitra G
- Subjects
- Animal Feed, Animals, Dairying, Diet veterinary, Dietary Fiber metabolism, Female, Fermentation, Proteolysis, Cattle physiology, Dietary Proteins metabolism, Lactation physiology, Rumen metabolism
- Abstract
The influence of stage of lactation and corresponding diets on rates of protein degradation (kd) is largely unstudied. Study objectives were to measure and compare in situ ruminal kd of crude protein (CP) and estimate rumen CP escape (rumen-undegradable protein; RUP) of selected feeds by cows at 3 stages of lactation fed corresponding diets, and to determine the incubation times needed in an enzymatic in vitro procedure, using 0.2 units of Streptomyces griseus protease per percent of true CP, that predicted in situ RUP. Residue CP was measured after in situ fermentation for 4, 8, 12, 24, 36, 48, and 72 h of 5 protein sources and 3 total mixed rations, which were fed to the in situ cows. Two nonlactating (dry) cows and 2 cows each at 190 (mid) and 90 (peak) days of lactation were used. Each pair of cows was offered free-choice diets that differed in composition to meet their corresponding nutrient requirements. Diets had decreasing proportions of forages and contained (dry matter basis) 11.9, 15.1 and 16.4% CP and 54.3, 40.3 and 35.3% neutral detergent fiber, for dry, mid, and peak TMR (TMR1, TMR2, and TMR3), respectively. Intakes were 10.3, 21.4, and 23.8kg of dry matter/d, respectively. Kinetic CP fractions (extractable, potentially degradable, undegradable, or slowly degradable) were unaffected by treatment. Lag time and kd varied among feeds. The kd was faster for all feeds (0.136/h) when incubated in dry-TMR1 cows compared with mid-TMR2 (0.097/h) or peak-TMR3 (0.098/h) cows, and no differences in lag time were detected. Calculated RUP, using estimated passage rates for each cow based on intake, differed between dry-TMR1 (0.382) and mid-TMR2 (0.559) or peak-TMR3 (0.626) cows, with a tendency for mid-TMR2 to be different from peak-TMR3. Using the average kd and lag time obtained from dry-TMR1 to calculate RUP for mid-TMR2 and peak-TMR3 cows using their passage rates reduced RUP values by 6.3 and 9.5 percentage units, respectively. Except for that of herring meal, in vitro residue CP at 6, 12, and 48h of enzymatic hydrolysis was correlated (r=0.90) with in situ RUP of peak-TMR3, mid-TMR2, and dry-TMR1, respectively. Although confounded within treatments, stage of lactation, diet, and intake appeared to affect CP degradation parameters and RUP. Using kd from nonlactating cows, or the RUP calculated from them, may bias diet evaluation or ration formulation for lactating cows. In addition, enzymatic in vitro predictions of RUP should be measured using incubation times that are appropriate for lactating cows., (Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.)
- Published
- 2014
- Full Text
- View/download PDF
5. Effect of Sicilian pasture feeding management on content of α-tocopherol and β-carotene in cow milk.
- Author
-
Marino VM, Schadt I, Carpino S, Caccamo M, La Terra S, Guardiano C, and Licitra G
- Subjects
- Animal Feed, Animal Husbandry, Animal Nutritional Physiological Phenomena, Animals, Diet veterinary, Female, Sicily, beta Carotene metabolism, Cattle physiology, Milk chemistry, alpha-Tocopherol analysis, beta Carotene analysis
- Abstract
This study was performed to evaluate α-tocopherol and β-carotene contents of pasture milk under ordinary Sicilian farming conditions. Fourteen dairy farms were allocated into 2 balanced groups on the basis of cultivated (CULT) or spontaneous (SPO) pasture type feeding. Bulk milk per farm was collected 4 times from February through April at 3-wk intervals. Pasture botanical and diet composition, diet nutritional quality, milk yield and composition were estimated each time. Pasture intake levels were calculated based on feed analyses, hay and concentrate amounts fed, and milk yield and chemical composition. According to pasture intake, the farms were split into low pasture intake (LPI; <29.5% of dry matter) and high pasture intake (HPI; >29.5% of dry matter) groups. Milk samples per farm were analyzed for α-tocopherol and β-carotene contents by HPLC. The SPO group had higher levels of α-tocopherol and β-carotene in milk (0.7 and 0.3 mg/L, respectively) and milk fat (19.0 and 7.5 mg/kg fat, respectively) compared with the CULT group in milk (0.5 and 0.2 mg/L, respectively) and milk fat (14.6 and 4.9 mg/kg, respectively). High pasture intake compared with LPI increased α-tocopherol in milk fat (18.0 and 16.0 mg/kg of fat, respectively). However, only in the SPO (not in CULT), HPI compared with LPI increased milk α-tocopherol (0.8 vs. 0.6 mg/L, respectively), milk β-carotene (0.3 vs. 0.2 mg/L, respectively), and milk fat β-carotene (8.4 vs. 6.6 mg/kg, respectively). Results may be related to the different botanical composition of the respective pasture types and pasture intake. Spontaneous pasture compared with CULT contained a higher mass proportion of Asteraceae, Fabaceae, Cruciferae, Euphorbiaceae, and Malvaceae plants. Milk and milk fat α-tocopherol levels were higher on test-days (TD)-1, TD-2, and TD-4 compared with TD-3. For HPI farms, milk fat β-carotene content was higher on the first 2 TD compared with the last 2 TD. These differences could be related to plant biological stage. On Sicilian dairy farms, the highest milk α-tocopherol and β-carotene contents may be obtained feeding high levels of SPO pasture in the spring., (Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.)
- Published
- 2014
- Full Text
- View/download PDF
6. Association of total mixed ration particle fractions retained on the Penn State Particle Separator with milk, fat, and protein yield lactation curves at the cow level.
- Author
-
Caccamo M, Ferguson JD, Veerkamp RF, Schadt I, Petriglieri R, Azzaro G, Pozzebon A, and Licitra G
- Subjects
- Animal Husbandry, Animal Nutritional Physiological Phenomena, Animals, Dairying, Dietary Fiber, Fats analysis, Female, Italy, Milk metabolism, Milk Proteins analysis, Particle Size, Pregnancy, Animal Feed, Cattle physiology, Lactation physiology, Milk chemistry
- Abstract
As part of a larger project aiming to develop management evaluation tools based on results from test-day (TD) models, the objective of this study was to examine the effect of physical composition of total mixed rations (TMR) tested quarterly from March 2006 through December 2008 on milk, fat, and protein yield curves for 25 herds in Ragusa, Sicily. A random regression sire-maternal grandsire model was used to estimate variance components for milk, fat, and protein yields fitted on a full data set, including 241,153 TD records from 9,809 animals in 42 herds recorded from 1995 through 2008. The model included parity, age at calving, year at calving, and stage of pregnancy as fixed effects. Random effects were herd × test date, sire and maternal grandsire additive genetic effect, and permanent environmental effect modeled using third-order Legendre polynomials. Model fitting was carried out using ASREML. Afterward, for the 25 herds involved in the study, 9 particle size classes were defined based on the proportions of TMR particles on the top (19-mm) and middle (8-mm) screen of the Penn State Particle Separator. Subsequently, the model with estimated variance components was used to examine the influence of TMR particle size class on milk, fat, and protein yield curves. An interaction was included with the particle size class and days in milk. The effect of the TMR particle size class was modeled using a ninth-order Legendre polynomial. Lactation curves were predicted from the model while controlling for TMR chemical composition (crude protein content of 15.5%, neutral detergent fiber of 40.7%, and starch of 19.7% for all classes), to have pure estimates of particle distribution not confounded by nutrient content of TMR. We found little effect of class of particle proportions on milk yield and fat yield curves. Protein yield was greater for sieve classes with 10.4 to 17.4% of TMR particles retained on the top (19-mm) sieve. Optimal distributions different from those recommended may reflect regional differences based on climate and types and quality of forages fed., (Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.)
- Published
- 2014
- Full Text
- View/download PDF
7. Association of total-mixed-ration chemical composition with milk, fat, and protein yield lactation curves at the individual level.
- Author
-
Caccamo M, Veerkamp RF, Licitra G, Petriglieri R, La Terra F, Pozzebon A, and Ferguson JD
- Subjects
- Animal Nutritional Physiological Phenomena physiology, Animals, Cattle metabolism, Dairying methods, Dairying statistics & numerical data, Diet veterinary, Fats analysis, Female, Food Analysis, Male, Milk standards, Models, Statistical, Pregnancy, Animal Feed, Cattle physiology, Lactation physiology, Milk chemistry, Milk Proteins analysis
- Abstract
The objective of this study was to examine the effect of the chemical composition of a total mixed ration (TMR) tested quarterly from March 2006 through December 2008 for milk, fat, and protein yield curves for 27 herds in Ragusa, Sicily. Before this study, standard yield curves were generated on data from 241,153 test-day records of 9,809 animals from 42 herds in Ragusa province collected from 1995 to 2008. A random regression sire-maternal grandsire model was used to develop variance components for yields. The model included parity, age at calving, year at calving, and stage of pregnancy as fixed effects. Random effects were herd × test date, sire and maternal grandsire additive genetic effect, and permanent environmental effect modeled using third-order Legendre polynomials. Model fitting was carried out using ASReml. Subsequently, the model with estimated variance components was used to examine the influence of TMR crude protein, soluble N, acid detergent lignin, neutral detergent fiber, acid detergent fiber, starch, and ash on milk, fat, and protein yield curves. The data set contained 46,531 test-day milk yield records from 3,554 cows in the 27 herds recorded during the study period. Initially, an analysis was performed using one dietary component (one-component analysis) within each model as a fixed effect associated with the test-day record closest to the months the TMR was sampled within each herd. An interaction was included with the nutrient component and days in milk. The effect of the TMR chemical component(s) was modeled using a ninth-order Legendre polynomial. The conditional Wald F-statistic for the fixed effects revealed significant effects for acid detergent fiber, neutral detergent fiber, crude protein, starch, and their interactions with days in milk on milk, fat, and protein yield. On the basis of these results, a multicomponent analysis was performed in which crude protein, neutral detergent fiber, and starch were simultaneously included in the model with days in milk interactions. Although both analyses revealed that diet composition influenced production responses depending on lactation stage, the multiple-component analysis showed more pronounced effects of starch and neutral detergent fiber relative to crude protein for all traits throughout lactation., (Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.)
- Published
- 2012
- Full Text
- View/download PDF
8. How do dairy cows chew?--particle size analysis of selected feeds with different particle length distributions and of respective ingested bolus particles.
- Author
-
Schadt I, Ferguson JD, Azzaro G, Petriglieri R, Caccamo M, Van Soest P, and Licitra G
- Subjects
- Animals, Female, Particle Size, Random Allocation, Animal Nutritional Physiological Phenomena, Cattle physiology, Diet veterinary, Mastication physiology
- Abstract
Not only feed but also respective bolus particle size could alter diet efficiency and cow performance. The objective of this project was to characterize particle size of selected feeds and respective swallowed boli. Feed samples included 6 different particle length rye grass hay samples, 1 grass silage, 1 corn silage, and 1 total mixed ration (TMR). Rye grass hay samples consisted of long hay and chopped hay particles retained on the 19- (19_PSPS hay), 8- (8_PSPS hay), and 1.18-mm (1.18_PSPS hay) Penn State Particle Separator (PSPS) screens and those collected on the pan (PSPS_pan hay). A sixth hay treatment was rye grass forage cut at 50-mm lengths and dried to hay (50-mm hay). Treatments were offered to 4 nonlactating and 4 lactating cows following rumen evacuation. Swallowed boli were collected and the number of chews per gram of ingested feed dry matter was determined. Feed and bolus particles of lengths ≥5mm were collected on a 1.6-mm screen using a horizontal wet sieving technique. This cut point was chosen, as the literature suggests that most fecal particles are shorter than 5mm. Dry matter proportions on this screen (PROP_1.6) were determined and particle lengths of retained particles were measured by image analysis. Mean particle lengths (ML) were calculated considering particles ≥5mm in length. Boli of long hay, of 19_PSPS hay, of 8_PSPS hay, and of 50-mm hay had similar ML of 10 to 11mm. Bolus PROP_1.6 were also similar between these treatments, ranging from 0.54 to 0.69. Bolus particle lengths and distributions of these treatments were not related to respective hay particles. Bolus of 1.18_PSPS hay had PROP_1.6 of 0.51 and a smaller ML of 8mm. The PSPS_pan hay had PROP_1.6 of only 0.33, but was still chewed intensely. Apparently, little particle size reduction occurred when cows ate the TMR or the silages. Feed and respective bolus PROP_1.6 were as follows: 0.66 and 0.59 in grass silage, 0.52 and 0.55 in corn silage, and 0.44 and 0.38 in the TMR. Feed and respective bolus ML were as follows: 13.8 and 11.6mm in grass silage, 12.0 and 11.2mm in corn silage, and 13.1 and 12.5mm in the TMR. Rye grass hay particles retained on PSPS screens ≥8mm, with ML of at least 25mm were longer compared with TMR particles, but respective bolus particles were shorter. Bolus particle size is not associated with the size of large feed particles chewed to a constant size that is appropriate for deglutition. This size may be related to feed chemical composition., (Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.)
- Published
- 2012
- Full Text
- View/download PDF
9. Effect of brine composition and brining temperature on cheese physical properties in Ragusano cheese.
- Author
-
Fucà N, McMahon DJ, Caccamo M, Tuminello L, La Terra S, Manenti M, and Licitra G
- Subjects
- Calcium analysis, Cheese analysis, Proteins analysis, Salts analysis, Salts chemistry, Sodium Chloride analysis, Temperature, Cheese standards, Food Technology methods
- Abstract
Composition and physical properties of cheeses are influenced by temperature, salt, and calcium concentration of brine. This work aimed to examine conditions of brine under which the cheese matrix contracts or expands in absence of restrictions imposed by surface rind development during overnight block formation. Three experimental 4-kg blocks of Ragusano cheese were produced at 3 different stretching temperatures (70, 80, and 90°C) and cut into pieces weighing approximately 40 to 50 g. One piece from each was chemically analyzed at time 0. All other pieces were measured for weight and volume and placed in plastic bags containing 300 mL of different brine solutions (2% NaCl with 0.1% Ca; 10% NaCl with 0, 0.1, 0.2, or 0.4% Ca; 18% NaCl with 0.1% Ca; and 26% NaCl with 0.1% Ca) at 3 different temperatures (4, 12, and 20°C). After 24h of brining, the cheeses were analyzed for weight, volume, chemical, and microstructural changes. Salt concentration in brine significantly influenced composition, weight, and volume of the cheeses after brining. Salt concentration was inversely related to cheese volume and weight. Changes in weight caused by altering the brining temperature were sufficient to reach statistical significance, and statistically significant volume changes were induced by brining temperature and its interaction with salt content. The highest volume increase (30%) occurred in the cheese stored in the 2% NaCl brine at the coldest temperature, whereas the greatest volume decrease was recorded in cheeses brined in the 26% NaCl brine. Composition was not affected by brining temperature. Calcium concentration did influence weight, volume, and composition, except on a fat-on-dry-basis. When cheeses were brined without added calcium, cheese volume and weight increased at all temperatures. At high calcium levels (0.4%), syneresis occurred and volume decreased, especially at 20°C (-16.5%). Microstructural investigation with porosity measurement confirmed weight and volume changes., (Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.)
- Published
- 2012
- Full Text
- View/download PDF
10. Objective estimation of body condition score by modeling cow body shape from digital images.
- Author
-
Azzaro G, Caccamo M, Ferguson JD, Battiato S, Farinella GM, Guarnera GC, Puglisi G, Petriglieri R, and Licitra G
- Subjects
- Animals, Feasibility Studies, Female, Reproducibility of Results, Body Constitution, Cattle physiology, Dairying methods, Models, Statistical, Photography veterinary
- Abstract
Body condition score (BCS) is considered an important tool for management of dairy cattle. The feasibility of estimating the BCS from digital images has been demonstrated in recent work. Regression machines have been successfully employed for automatic BCS estimation, taking into account information of the overall shape or information extracted on anatomical points of the shape. Despite the progress in this research area, such studies have not addressed the problem of modeling the shape of cows to build a robust descriptor for automatic BCS estimation. Moreover, a benchmark data set of images meant as a point of reference for quantitative evaluation and comparison of different automatic estimation methods for BCS is lacking. The main objective of this study was to develop a technique that was able to describe the body shape of cows in a reconstructive way. Images, used to build a benchmark data set for developing an automatic system for BCS, were taken using a camera placed above an exit gate from the milking robot. The camera was positioned at 3 m from the ground and in such a position to capture images of the rear, dorsal pelvic, and loin area of cows. The BCS of each cow was estimated on site by 2 technicians and associated to the cow images. The benchmark data set contained 286 images with associated BCS, anatomical points, and shapes. It was used for quantitative evaluation. A set of example cow body shapes was created. Linear and polynomial kernel principal component analysis was used to reconstruct shapes of cows using a linear combination of basic shapes constructed from the example database. In this manner, a cow's body shape was described by considering her variability from the average shape. The method produced a compact description of the shape to be used for automatic estimation of BCS. Model validation showed that the polynomial model proposed in this study performs better (error=0.31) than other state-of-the-art methods in estimating BCS even at the extreme values of BCS scale., (Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.)
- Published
- 2011
- Full Text
- View/download PDF
11. Associations of breed and feeding management with milk production curves at herd level using a random regression test-day model.
- Author
-
Caccamo M, Veerkamp RF, Ferguson JD, Petriglieri R, La Terra F, and Licitra G
- Subjects
- Animal Nutritional Physiological Phenomena, Animals, Fats analysis, Female, Italy, Milk metabolism, Milk Proteins analysis, Pregnancy, Regression Analysis, Species Specificity, Cattle classification, Cattle physiology, Feeding Methods veterinary, Lactation physiology, Milk chemistry
- Abstract
Earlier studies identified large between-herd variation in estimated lactation curve parameters from test-day milk yield and milk composition records collected in Ragusa province, Italy. The objective of this study was to identify sources of variation able to explain these between-herd differences in milk production curves, by estimating associations of animal breed (Holstein Friesian vs. Brown Swiss), feeding system [separate feeding (SF) vs. total mixed ration (TMR)], and TMR chemical composition on milk and milk components herd curves. Data recorded from 1992 through 2007 for test-day (TD) milk, fat, and protein yields from 1,287,019 records of 148,951 lactations of 51,489 cows in 427 herds were processed using a random regression TD model. Random herd curves (HCUR) for milk, fat, and protein yields were estimated from the model per herd, year, and parity (1, 2, and 3+) using 4-order Legendre polynomials. From March 2006 through December 2007, samples of TMR were collected every 3 mo from 37 farms in Ragusa province. Samples were analyzed for dry matter, ash, crude protein, soluble nitrogen, acid detergent lignin, neutral detergent fiber, acid detergent fiber, and starch. Traits used to describe milk production curves were peak, days in milk at peak, persistency, and mean. Association of feeding system and animal breed with HCUR traits was investigated using a general mixed model procedure. Association of TMR chemical composition with HCUR traits was investigated using multivariate analysis with regression and stepwise model selection. Results were consistent for all traits and parities. Feeding system was significantly associated with HCUR peak and mean, with higher values for TMR. Animal breed was significantly associated with HCUR persistency, with higher values for Brown Swiss herds. Furthermore, animal breed influenced HCUR peak and mean, with higher values for Holstein Friesian herds. Crude protein had the largest effect on HCUR peak and mean, whereas the interaction between crude protein and dry matter mainly affected persistency. When provided by a national evaluation system, HCUR can be used as an indicator of herd feeding management., (Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.)
- Published
- 2010
- Full Text
- View/download PDF
12. Variance components for test-day milk, fat, and protein yield, and somatic cell score for analyzing management information.
- Author
-
Caccamo M, Veerkamp RF, de Jong G, Pool MH, Petriglieri R, and Licitra G
- Subjects
- Analysis of Variance, Animals, Cattle genetics, Cell Count, Environment, Female, Genetic Variation, Lactation genetics, Milk chemistry, Milk cytology, Models, Biological, Parity, Phenotype, Pregnancy, Spain, Cattle physiology, Dairying methods, Fats analysis, Lactation physiology, Milk Proteins analysis
- Abstract
Test-day (TD) models are used in most countries to perform national genetic evaluations for dairy cattle. The TD models estimate lactation curves and their changes as well as variation in populations. Although potentially useful, little attention has been given to the application of TD models for management purposes. The potential of the TD model for management use depends on its ability to describe within- or between-herd variation that can be linked to specific management practices. The aim of this study was to estimate variance components for milk yield, milk component yields, and somatic cell score (SCS) of dairy cows in the Ragusa and Vicenza areas of Italy, such that the most relevant sources of variation can be identified for the development of management parameters. The available data set contained 1,080,637 TD records of 42,817 cows in 471 herds. Variance components were estimated with a multilactation, random-regression, TD animal model by using the software adopted by NRS for the Dutch national genetic evaluation. The model comprised 5 fixed effects [region x parity x days in milk (DIM), parity x year of calving x season of calving x DIM, parity x age at calving x year of calving, parity x calving interval x stage of pregnancy, and year of test x calendar week of test] and random herd x test date, regressions for herd lactation curve (HCUR), the animal additive genetic effect, and the permanent environmental effect by using fourth-order Legendre polynomials. The HCUR variances for milk and protein yields were highest around the time of peak yield (DIM 50 to 150), whereas for fat yield the HCUR variance was relatively constant throughout first lactation and decreased following the peak around 40 to 90 DIM for lactations 2 and 3. For SCS, the HCUR variances were relatively small compared with the genetic, permanent environmental, and residual variances. For all the traits except SCS, the variance explained by random herd x test date was much smaller than the HCUR variance, which indicates that the development of management parameters should focus on between-herd parameters during peak lactation for milk and milk components. For SCS, the within-herd variance was greater than the between-herd variance, suggesting that the focus should be on management parameters explaining variances at the cow level. The present study showed clear evidence for the benefits of using a random regression TD model for management decisions.
- Published
- 2008
- Full Text
- View/download PDF
13. Prevalence of mastitis pathogens in Ragusa, Sicily, from 2000 to 2006.
- Author
-
Ferguson JD, Azzaro G, Gambina M, and Licitra G
- Subjects
- Animals, Cattle, Female, Floors and Floorcoverings, Housing, Animal, Italy, Logistic Models, Mammary Glands, Animal microbiology, Milk microbiology, Prevalence, Risk Factors, Species Specificity, Staphylococcal Infections epidemiology, Staphylococcal Infections microbiology, Staphylococcus aureus isolation & purification, Streptococcal Infections epidemiology, Streptococcal Infections microbiology, Streptococcus isolation & purification, Bedding and Linens microbiology, Mastitis, Bovine epidemiology, Mastitis, Bovine microbiology, Staphylococcal Infections veterinary, Streptococcal Infections veterinary
- Abstract
The objective of this study was to report the prevalence of intramammary infections (IMI) in Ragusa, Sicily, from milk samples (n = 18,711) collected between October 2000 and June 2006 from 101 dairy herds. Milk samples were collected at 9,747 cow sampling events from 5,285 individual cows. Samples were individual quarter (92.8%) or composite samples (7.2%) from an individual cow. Logistic regression was used to examine the prevalence of IMI at the level of milk sample and at the level of cow, controlling for year and season of collection, type of sample (individual quarter or composite), and type of housing and bedding of the cow at the time of collection. Bedding and housing types were as follows, respectively (number of herd groups): bedding: none (61), organic [51 (straw, 50; sawdust, 1)], and sand (3); housing: bedded pack (37), free stalls (57), tie stalls (4), and paddock (17). Raw prevalence of cow IMI for a sample event was as follows (percentage of cow samples): no growth, 47.4%; coagulase-negative staphylococci, 22.6%; Staphylococcus aureus, 20.6%; other Streptococcus spp., 11.1%; Streptococcus agalactiae, 2.3%; coliform bacteria, 2.9%; and other organisms, 5.8%. Prevalence of IMI differed by bedding type for Staph. aureus (none, 24.5%; organic, 12.7%; sand, 12.3%) and coagulase-negative staphylococci (none, 13.1%; organic, 27.4%; sand, 26.9%) but not for Streptococcus spp. or coliform bacteria. Prevalence of Streptococcus spp. IMI differed by housing type (tie stalls, 22.2%; bedded pack, 12.8%; free stalls, 8.4%; paddock, 7.1%). Housing was not associated with the prevalence of IMI for other bacteria. Herd monthly prevalence of Staph. aureus and Streptococcus spp. IMI was associated with decreased mean milk production (Staph. aureus, -1.42 kg/d per cow, SEM 0.51; Streptococcus spp., -1.31 kg/d per cow, SEM 0.64) and increased mean linear score (Staph. aureus, 1.01 units/d per cow, SEM 0.16; Streptococcus spp., 0.59 units/d per cow, SEM 0.22). Herds (n = 11) with a mean linear score (MLS) less than 3.3 units had the lowest prevalence of Staph. aureus IMI and monthly MLS and the greatest monthly mean milk production compared with other herds grouped by MLS [MLS 3.31 to 3.99 (n = 20), MLS 4.00 to 4.46 (n = 20), MLS >4.46 (n = 17), and MLS not available (n = 33)]. Implementation of a milk quality program to control gram-positive organisms is important for Ragusa.
- Published
- 2007
- Full Text
- View/download PDF
14. Body condition assessment using digital images.
- Author
-
Ferguson JD, Azzaro G, and Licitra G
- Subjects
- Animals, Cattle anatomy & histology, Cattle physiology, Computer Simulation, Female, Image Processing, Computer-Assisted, Lactation physiology, Reproducibility of Results, Video Recording, Body Composition, Cattle classification, Dairying methods, Dairying standards, Photography veterinary
- Abstract
This project assessed the ability to assign a body condition score (BCS) to a dairy cow from digital photographs or videos. Images were taken from the rear of the cow at a 0 to 20 degrees angle relative to the tail head. Four observers assigned a BCS to each of 57 cows at a farm visit (live, farm 1) and later from a photograph (photo). Means +/- standard deviations of BCS by method and observer were as follows: live = 3.25 +/- 0.51, 3.42 +/- 0.49, 3.32 +/- 0.58, 3.13 +/- 0.62; photo = 3.36 +/- 0.52, 3.32 +/- 0.43, 3.44 +/- 0.62, 3.14 +/- 0.6 for observers 1 to 4, respectively. Body condition score means differed across observers for live (observer 2 higher and observer 4 lower, compared with observers 1 and 3) and photo methods (observer 3 lower, compared with observers 1, 2, and 3); however, within observer, the mean live BCS did not differ from the mean photo BCS. Correlation coefficients between BCS assigned live and from photos were 0.84, 0.82, 0.82, and 0.90 for observers 1 to 4, respectively. Subsequently, observer 1 visited 2 farms, assigned a live BCS, and digitally photographed 187 cows (56 and 131 cows from farms 2 and 3, respectively). Observers 2, 3, and 4 assigned a BCS from the photographs. Means +/- standard deviations of BCS by observer (method) were 1 (live) 3.35 +/- 0.55; 2 (photo) 3.33 +/- 0.49; 3 (photo) 3.60 +/- 0.54; and 4 (photo) 3.26 +/- 0.62. The mean BCS for observer 3 was higher and that for observer 4 was lower than for observers 1 and 2. Correlation coefficients between observer 1 and observers 2 through 4 were 0.78, 0.76, and 0.79, respectively. Observer 1 assigned a BCS to 41 cows at a farm visit and 3 wk later assessed the BCS of cows from a video taken at a farm visit by a different individual. Cows were restrained in headlocks at a feed bunk when assessing BCS and for video production. No difference was detected for the mean BCS, for the standard deviation of the mean BCS, or in the distribution of BCS between the live and video assessments. Mean and SD for 17 groups of Holstein cows from 20 farms were used to generate 10,000 random samples of BCS. Groups of 25, 50, 100, and 150 cows were created from the random samples, and estimates of mean BCS were determined by sampling 3 to 80% of the group. Estimates of mean BCS with a sample size of 30% or more from a group of cows fell within the 95% confidence limit of the true mean more than 98% of the time. Digital photographs provide adequate imaging for assessment of BCS. Sampling 30% of a group should be adequate to assess the mean BCS. Video imaging allowed a rapid assessment of BCS but did not permit identification of individual cows.
- Published
- 2006
- Full Text
- View/download PDF
15. Interaction of brine concentration, brine temperature, and presalting on salt penetration in Ragusano cheese.
- Author
-
Melilli C, Barbano DM, Caccamo M, Tuminello L, Carpino S, and Licitra G
- Subjects
- Animals, Cheese microbiology, Fats analysis, Food Technology, Hydrogen-Ion Concentration, Milk chemistry, Proteins analysis, Salts chemistry, Temperature, Water analysis, Cheese analysis, Food Handling methods, Salts analysis, Sodium Chloride analysis
- Abstract
Thirty-one 3.6-kg blocks of Ragusano cheese were made on each of 6 different days (in different weeks) starting with a different batch of milk on each day. On d 1, 3, and 5, the cheeses were not presalted and on d 2, 4, and 6, all cheeses were presalted (PS). One of the 31 blocks of cheese was selected at random for analysis before brine salting (i.e., on d 0). The remaining 30 blocks were randomly divided into 2 groups of 15 blocks each; one group was placed in 18% brine (18%B) and the other group was placed in saturated brine (SB). For the 15 blocks within each of the 2 brine concentrations (BC), 5 blocks were placed in a brine tank at 12 degrees C, 5 at 15 degrees C, and 5 at 18 degrees C, and submerged for 24 d. The research objective was to determine the combined impacts (i.e., interactions) of PS the curd before stretching, BC (SB vs. 18%B), and brine temperature (BT; 12, 15, and 18 degrees C) on salt uptake, moisture content, and yield of Ragusano cheese. Although BC, BT, and PS each had their own separate impacts on salt uptake, there was little interaction of these effects on salt uptake when they were used in combination. The PS most quickly delivered salt to the interior of the cheese and was the most effective approach to salting for controlling early gas formation. There were strong separate impacts of BC, BT, and PS on cheese moisture content, moisture loss, and net weight loss, with BC having the largest separate impact on these parameters. Reducing BT reduced salt content and increased moisture, but the effects were small. The more important effect of reduced BT was to reduce growth of gas forming bacteria. The 18%B produced higher moisture, and less moisture and weight loss than SB. The effect of interactions of BC, BT, and PS on moisture loss and net weight loss were small. To achieve the maximum benefit from the various approaches to salting for controlling early gas formation in Ragusano cheese, PS combined with slightly lower BT (i.e., 15 degrees C instead of 18 degrees C) should be used. Although using 18%B instead of SB did increase salt uptake, the point at which improved salt uptake occurred due to use of 18%B did not provide benefit in prevention of early gas formation, as reported separately. However, use of 18%B instead of SB provided a 9.98% increase in cheese yield due to reduced moisture loss during brining; this would be very attractive to cheese makers. The increase in yield needs to be balanced against the risk of growth of undesirable bacteria in the 18%B and the creation of another cheese quality defect.
- Published
- 2006
- Full Text
- View/download PDF
16. Proteolysis and microstructure of Piacentinu Ennese cheese made using different farm technologies.
- Author
-
Fallico V, Tuminello L, Pediliggieri C, Horne J, Carpino S, and Licitra G
- Subjects
- Animals, Calcium Phosphates analysis, Calcium Phosphates chemistry, Caseins metabolism, Chromatography, High Pressure Liquid, Chymosin metabolism, Crystallization, Hydrogen-Ion Concentration, Hydrolysis, Microscopy, Electron, Scanning, Milk, Milk Proteins analysis, Nitrogen analysis, Solubility, Agriculture methods, Cheese analysis, Food Handling methods, Peptide Hydrolases metabolism
- Abstract
The aim of this study was to provide the biochemical and structural characterization of Piacentinu Ennese cheese and to evaluate the impact of different farm technologies on cheese proteolysis and microstructure. Fifteen cheeses were manufactured according to traditional technology, i.e., from raw milk and farmhouse rennet in the absence of starter culture. Pasteurized milk, commercial rennet, and starter were used for production of 20 nontraditional cheeses. Proteolysis in Piacentinu Ennese cheese was monitored during a 2- to 10-mo ripening time. Low rates of overall proteolysis were observed in cheese, as percentages of total N soluble at pH 4.6 and in 12% trichloroacetic acid were about 11.40 and 8.10%, respectively, after 10 mo of age. Patterns of primary proteolysis by urea-PAGE showed that alpha(s)-caseins were degraded to a larger extent than were beta-caseins, although a considerable amount of both caseins was still intact after 10 mo. Reversed phase-HPLC analysis of the cheese peptide fractions showed a slow decrease in the levels of hydrophobic peptides coupled to increasing levels of hydrophilic compounds as the cheese aged. The structural characteristics of Piacentinu Ennese cheese were evaluated by scanning electron microscopy after 2, 4, and 6 mo of age. The micrographs showed a sponge-like structural network with a well-distributed system of empty spaces, originally occupied by whey and fat. The microstructure changed during cheese ripening to become more compact with cavities of smaller size. Farm technology significantly affected cheese proteolysis and microstructure. Nontraditional cheeses had higher levels of pH 4.6-soluble N and showed a larger hydrolysis of alpha(s)-casein fractions by urea-PAGE analysis than did traditional cheeses. Large differences between cheese-types also concerned the patterns of secondary proteolysis. Nontraditional cheeses had higher levels of 12% trichloroacetic acid-soluble N and showed larger proportions of free amino acids and hydrophilic peptides in the HPLC profiles of the corresponding 70% ethanol-soluble N fraction than traditional cheeses. Nontraditional cheeses also had a more open structure with a coarser and less continuous appearance than did traditional cheeses. A large amount of variability in cheese proteolysis and structure within nontraditional treatment reflected farm-dependent changes in manufacturing conditions related to the use of various types of rennet and starter.
- Published
- 2006
- Full Text
- View/download PDF
17. Composition, microstructure, and surface barrier layer development during brine salting.
- Author
-
Melilli C, Carcò D, Barbano DM, Tumino G, Carpino S, and Licitra G
- Subjects
- Chemical Phenomena, Chemistry, Physical, Food Technology, Freeze Fracturing, Microscopy, Electron, Scanning, Solutions, Water analysis, Cheese analysis, Food Handling methods, Salts chemistry
- Abstract
The goal of this study was to characterize the changes in chemical composition, porosity, and structure that occur at the surface of a block of brine-salted cheese and their relationship to the rate at which salt is taken up from the brine. To create a difference in composition, salt uptake, and barrier layer properties, identical blocks of Ragusano cheese were placed in saturated and 18% salt brine at 18 degrees C for 12 d. The overall moisture content and porosity decreased, whereas salt and salt in moisture content increased near the surface of blocks of brine-salted Ragusano cheese for all treatments. The general appearance of the microstructure of the surface of the blocks of brine-salted cheese was much more compact than the microstructure 1 mm inside the block at both brine concentrations. Large differences in porosity of the barrier layer were produced by brine-salting cheese in 18% vs. saturated brine, with cheese in saturated brine having much lower porosity at the surface and taking up much less salt during brining. The macro network of water channels within the microstructure of the cheese was less open near the surface of the block for cheese in both saturated and 18% brine after 4 d. However, no large differences in the size of the macro channels in the cheese structure due to the difference in brine concentration were observed by scanning electron microscopy. It is possible that the shrinkage of the much smaller pore structure within the casein matrix of the cheese is more important and will become more limiting to the rate of salt diffusion. Further microstructure work at higher resolution is needed to answer this question. The calculated decrease in porosity at the exterior 1-mm portion of the block was 50.8 and 29.2% for cheeses that had been in saturated vs. 18% brine for 12 d, respectively. The difference in brine concentration had a very large impact on the salt in moisture content of the cheese. The exterior of the cheese in 18% brine reached a salt in moisture content almost identical to that of the brine very quickly (17.3% at 4 d), whereas the salt in moisture content at the surface of the cheese block in saturated brine was only 11.9% at 4 d. There appears to be some critical concentration of salt in brine above which there is a large negative impact on salt uptake due to the creation of a barrier layer at the surface of the block of cheese.
- Published
- 2005
- Full Text
- View/download PDF
18. Evaluation of bitterness in Ragusano cheese.
- Author
-
Fallico V, McSweeney PL, Horne J, Pediliggieri C, Hannon JA, Carpino S, and Licitra G
- Subjects
- Caseins analysis, Caseins chemistry, Caseins metabolism, Cheese standards, Chromatography, High Pressure Liquid methods, Electrophoresis, Polyacrylamide Gel methods, Hydrogen-Ion Concentration, Milk Proteins analysis, Peptides analysis, Peptides chemistry, Quality Control, Time Factors, Urea, Cheese analysis, Food Technology, Milk Proteins metabolism, Peptides metabolism, Taste
- Abstract
The appearance of undesirable bitter taste in Ragusano cheese was investigated by comparing the composition of 9 bitter cheeses with that of 9 reference cheeses of good quality by means of chemical, electrophoretic, and chromatographic analyses. Rates of proteolysis were significantly affected in cheeses of different quality. Primary proteolysis, as measured by pH 4.6-soluble N, was significantly greater in bitter cheeses compared with reference samples. Urea-PAGE profiles showed an almost complete breakdown of caseins in bitter cheeses and the further degradation of primary peptides into smaller compounds not detectable by this technique. Cheeses with defects had significantly lower levels of secondary proteolysis as reflected by the percentage of pH 4.6-soluble N soluble in 12% trichloroacetic acid and the amounts of total free amino acids. Peptides separated by reversed phase-HPLC revealed that the large and significant differences in peptide profiles of the soluble fractions between bitter and reference cheeses were mainly due to a much higher proportion of hydrophobic peptides in the former. The occurrence of bitterness in Ragusano cheese was therefore attributable to unbalanced levels of proteolysis and peptidolysis. Extensive degradation of caseins and primary peptides by activities of proteases produced large amounts of small- and medium-sized hydrophobic peptides that were not adequately removed by peptidases of microflora and therefore accumulated in cheese potentially contributing to its bitter taste. The presence of these compounds in bitter cheeses was related to high salt-in-moisture and low moisture contents that limited the enzymatic activities of microflora important in secondary proteolysis. Combining salt-in-moisture and the ratio of hydrophobic-to-hydrophilic soluble peptides resulted in the best logistic partial least squares regression model predicting cheese quality. Although bitterness is known to be rarely encountered in cheese at salt-in-moisture levels >5.0, all of the bitter cheeses analyzed in this study had salt-in-moisture levels much greater than this value. According to the logistic model, a risk of bitterness development may exist for cheeses with a midrange (5 to 10%) salt-in-moisture content but with an inadequate level of secondary proteolysis.
- Published
- 2005
- Full Text
- View/download PDF
19. Influence of brine concentration, brine temperature, and presalting on early gas defects in raw milk pasta filata cheese.
- Author
-
Melilli C, Barbano DM, Caccamo M, Calvo MA, Schembari G, and Licitra G
- Subjects
- Cheese microbiology, Colony Count, Microbial, Dose-Response Relationship, Drug, Enterobacteriaceae metabolism, Food Microbiology, Random Allocation, Time Factors, Cheese analysis, Enterobacteriaceae growth & development, Food Handling methods, Salts pharmacology, Temperature
- Abstract
Thirty-one 3.8-kg blocks of Ragusano cheese were made on each of 6 d starting with a different batch of raw milk on each day. On d 1, 3, and 5, cheeses were not presalted and on d 2, 4, and 6, all cheeses were presalted. Before brine salting, one of the 31 blocks of cheese was selected at random for analysis (i.e., at d 0). The remaining 30 blocks were randomly divided into 2 batches of 15 blocks each, one group was placed in 18% brine, and the other group was placed in saturated brine. For the 15 blocks within each of the 2 brine concentrations, 5 blocks each were placed in brine tanks at 12, 15, and 18 degrees C. Cheese blocks were sampled immediately before brine salting (d 0) and after 1, 4, 8, 16, and 24 d of brine salting. Presalting the curd with 2% added salt before stretching reduced the coliform count in the cheese by 1.41 log and resulted in a major reduction in early gas formation. Across all treatments in the present study, the average reduction in gas formation due to presalting was 75%. Reducing brine temperature had the second largest impact on reducing gas production, but did not reduce the coliform count in the cheese. Reducing brine temperature from 18 to 12 degrees C made a larger reduction in early gas formation in cheeses that were not presalted (from 6.8 to 1.8% gas holes, respectively) than in cheeses that were presalted (from 1.9 to 0.5% gas holes, respectively). To achieve the same absolute level of gas production in the nonpre-salted cheese as was achieved in presalted cheese in combination with 18 degrees C brine, the brine temperature for the nonpresalted cheese had to be lowered from 18 to 12 degrees C. Reducing brine concentration, although effective at increasing the rate of salt penetration into the block, did not have any impact on coliform count and had minimal impact on reducing gas production. The condition where reducing brine concentration was able to make a reduction in gas production was for cheeses that were not presalted and brined at 18 degrees C. Presalting is a very simple and practical approach to reducing the problem of early gas formation in combination with strategies to improve milk quality and cheese making conditions. Further work is needed to understand the impact of different levels of presalting on death of coliforms and gas production in the cheese.
- Published
- 2004
- Full Text
- View/download PDF
20. Chemometric analysis of proteolysis during ripening of Ragusano cheese.
- Author
-
Fallico V, McSweeney PL, Siebert KJ, Horne J, Carpino S, and Licitra G
- Subjects
- Amino Acids analysis, Caseins metabolism, Chromatography, High Pressure Liquid, Electrophoresis, Polyacrylamide Gel, Fibrinolysin metabolism, Food Handling, Hydrogen-Ion Concentration, Hydrolysis, Kinetics, Peptides analysis, Time Factors, Urea, Cheese analysis, Milk Proteins metabolism
- Abstract
Chemometric modeling of peptide and free amino acid data was used to study proteolysis in Protected Denomination of Origin Ragusano cheese. Twelve cheeses ripened 3 to 7 mo were selected from local farmers and were analyzed in 4 layers: rind, external, middle, and internal. Proteolysis was significantly affected by cheese layer and age. Significant increases in nitrogen soluble in pH 4.6 acetate buffer and 12% trichloroacetic acid were found from rind to core and throughout ripening. Patterns of proteolysis by urea-PAGE showed that rind-to-core and age-related gradients of moisture and salt contents influenced coagulant and plasmin activities, as reflected in varying rates of hydrolysis of the caseins. Analysis of significant intercorrelations among chemical parameters revealed that moisture, more than salt content, had the largest single influence on rates of proteolysis. Lower levels of 70% ethanol-insoluble peptides coupled to higher levels of 70% ethanol-soluble peptides were found by reversed phase-HPLC in the innermost cheese layers and as the cheeses aged. Non-significant increases of individual free amino acids were found with cheese age and layer. Total free amino acids ranged from 14.3 mg/g (6.2% of total protein) at 3 mo to 22.0 mg/g (8.4% of total protein) after 7 mo. Glutamic acid had the largest concentration in all samples at each time and, jointly with lysine and leucine, accounted for 48% of total free amino acids. Principal components analysis and hierarchical cluster analysis of the data from reversed phase-HPLC chromatograms and free amino acids analysis showed that the peptide profiles were more useful in differentiating Ragusano cheese by age and farm origin than the amino acid data. Combining free amino acid and peptide data resulted in the best partial least squares regression model (R(2) = 0.976; Q(2) = 0.952) predicting cheese age, even though the peptide data alone led to a similarly precise prediction (R(2) = 0.961; Q(2) = 0.923). The most important predictors of age were soluble and insoluble peptides with medium hydrophobicity. The combined peptide data set also resulted in a 100% correct classification by partial least squares discriminant analysis of cheeses according to age and farm origin. Hydrophobic peptides were again discriminatory for distinguishing among sample classes in both cases.
- Published
- 2004
- Full Text
- View/download PDF
21. Lipolysis and proteolysis in Ragusano cheese during brine salting at different temperatures.
- Author
-
Melilli C, Barbano DM, Manenti M, Lynch JM, Carpino S, and Licitra G
- Subjects
- Fatty Acids, Nonesterified analysis, Fatty Acids, Nonesterified metabolism, Temperature, Triglycerides metabolism, Cheese analysis, Endopeptidases metabolism, Food Handling methods, Lipolysis, Salts
- Abstract
The influence of temperature (12, 15, 18, 21, and 24 degrees C) of saturated brine on lipolysis and proteolysis in 3.8-kg blocks of Ragusano cheese during 24 d of brining was determined. Twenty-six 3.8-kg blocks were made on each day. The cheese making was replicated on 3 different days. All blocks were labeled and weighed prior to brining. One block was sampled and analyzed prior to brine salting. Five blocks were placed into each of 5 different brine tanks at different temperatures. One block was removed from each brine tank after 1, 4, 8, 16, and 24 d of brining, weighed, sampled, and analyzed. Both proteolysis and lipolysis in Ragusano cheese increased with increasing brine temperature (from 12 to 24 degrees C), with the impact of brine temperature on proteolysis and lipolysis becoming progressively larger. Proteolysis was highest in the interior of the blocks where salt in moisture content was lowest and temperature had more impact on proteolysis in the interior position of the block than the exterior position. However, the opposite was true for lipolysis. The total free fatty acid content was higher and temperature had more impact on lipolysis at the exterior position of the block where salt in moisture was the highest. This effect of increased salt concentration on lipolysis was confirmed with direct salted cheeses in a small follow-up experiment. Lipolysis increased with increasing salt in the moisture content of the direct salted cheeses. It is likely that migration of water-soluble FFA from the brine into the cheese and from the interior portion of the cheese to the exterior portion of the cheese also contributed to a higher level of FFA at the exterior portion of the blocks. As brine temperature increased the profile of individual free fatty acids released from triglycerides changed, with the proportion of short-chain free fatty acids increasing with increasing brine temperature. This effect was largest at high salt in moisture content.
- Published
- 2004
- Full Text
- View/download PDF
22. Composition and aroma compounds of Ragusano cheese: native pasture and total mixed rations.
- Author
-
Carpino S, Mallia S, La Terra S, Melilli C, Licitra G, Acree TE, Barbano DM, and Van Soest PJ
- Subjects
- Animals, Chromatography, Gas, Diet, Fatty Acids, Nonesterified analysis, Gas Chromatography-Mass Spectrometry, Humans, Plants, Edible chemistry, Sicily, Smell, Animal Feed, Cattle, Cheese analysis, Odorants analysis
- Abstract
Raw milk from 13 cows fed TMR supplemented with native pasture and from 13 cows fed only TMR on one farm was collected separately 4 times with an interval of 15 d between collections. Two blocks (14 kg each) of cheese were made from each milk. The objective was to determine the influence of consumption of native plants in Sicilian pastures on the aroma compounds present in Ragusano cheese. Milk from cows that consumed native pasture plants produced cheeses with more odor-active compounds. In 4-mo-old cheese made from milk of pasture-fed cows, 27 odor-active compounds were identified, whereas only 13 were detected in cheese made from milk of total mixed ration-fed cows. The pasture cheeses were much more rich in odor-active aldehyde, ester, and terpenoid compounds than cheeses from cows fed only total mixed ration. A total of 8 unique aroma-active compounds (i.e., not reported in other cheeses evaluated by gas chromatography olfactory) were detected in Ragusano cheese made from milk from cows consuming native Sicilian pasture plants. These compounds were 2 aldehydes ([E,E]-2,4-octadienal and dodecanal), 2 esters (geranyl acetate and [E]-methyl jasmonate), 1 sulfur compound (methionol), and 3 terpenoid compounds (1-carvone, L(-) carvone, and citronellol). Geranyl acetate and (E)-methyl jasmonate were particularly interesting because these compounds are released from fresh plants as they are being damaged and are part of a possible plant defense mechanism against damage from insects. Most of the odor-active compounds that were unique in Ragusano cheese from pasture-fed cows appeared to be compounds created by oxidation processes in the plants that may have occurred during foraging and ingestion by the cow. Some odor-active compounds were consistently present in pasture cheeses that were not detected in the total mixed ration cheeses or in the 14 species of pasture plants analyzed. Either these compounds were present in other plants not analyzed, created in the rumen or in cheese after the pasture-plant material had been consumed, or the compounds were lost in the method of sample extraction used for the plant analysis (i.e., steam distillation) versus the solid-phase microextraction method used for the cheeses. This research has demonstrated clearly that some unique odor-active compounds found in pasture plants can be transferred to the cheese.
- Published
- 2004
- Full Text
- View/download PDF
23. Measurement of gas holes and mechanical openness in cheese by image analysis.
- Author
-
Caccamo M, Melilli C, Barbano DM, Portelli G, Marino G, and Licitra G
- Subjects
- Gases, Photography, Reproducibility of Results, Signal Processing, Computer-Assisted, Software, Cheese, Food Technology, Image Processing, Computer-Assisted
- Abstract
A method to measure the amount of the surface area of cheese slices occupied by gas holes was developed to reflect the relative gas production among different cheeses. A digital camera mounted on a copy stand with lighting was used to make digital images of each slice of cheese. A commercial digital image analysis software program was used and an algorithm was written to measure the area of the image of the cheese slice occupied by holes. The image was cropped and scanned to determine which color channel produced the best image contrast. The MATLAB program allowed the user to eliminate mechanical openness or false holes and then to scan the image to produce a percent distribution of pixels in the image as a function of pixel intensity. The user then determined a threshold value to differentiate pixels that were in holes from those representing areas with no holes. The percentage of the total surface area occupied by holes was calculated. The coefficient of variation of the method ranged from 2.43% with gas holes of about 1% of the surface of the cheese slice to a coefficient of variation of 0.92% with gas holes of about 6.8% of the surface area of the cheese slice. Examples of applications of this method are given for Emmental, Ragusano, and Cheddar cheeses. The method can be used as a tool in research studies to correlate the amount of gas production with manufacturing conditions or as a quality control tool in cheese manufacturing.
- Published
- 2004
- Full Text
- View/download PDF
24. Contribution of native pasture to the sensory properties of Ragusano cheese.
- Author
-
Carpino S, Horne J, Melilli C, Licitra G, Barbano DM, and Van Soest PJ
- Subjects
- Animals, Color, Diet, Humans, Odorants analysis, Seasons, Sicily, Taste, Animal Feed, Cattle, Cheese analysis, Sensation
- Abstract
Ragusano is a Protected Denomination of Origin cheese produced in the Hyblean area of Sicily. Sixteen samples of Ragusano cheese from two different treatments [pasture and total mixed ration (TMR)] were evaluated after 4 and 7 mo of aging. The color of the cheeses produced from milk of cows consuming fresh native pasture plants was much more yellow than cheeses from TMR fed cows (i.e., higher Hunter b value). This was due to transfer of beta-carotene and related compounds from the diet and demonstrated that compounds from native pasture plants changed the sensory characteristics of Ragusano cheese. To avoid a "halo" effect in a trained panel, quantitative descriptive analysis sensory evaluation of these cheeses for odor, taste, consistency, and mouth structure, color differences among cheeses were masked. A unique approach in sensory analysis was developed using sunglasses with lenses designed to block light at the specific wavelengths at which panelists would detect differences in color among samples. Testing was conducted every 2-wk period (15-d increments) with two tests per week using 11 trained panelists. All the panelists tasted all the products. Panelists were able to detect significant differences in the sensory characteristics of cheeses produced from milk of cows consuming native pastures versus TMR even when the color difference was masked.
- Published
- 2004
- Full Text
- View/download PDF
25. Influence of the temperature of salt brine on salt uptake by Ragusano cheese.
- Author
-
Melilli C, Barbano DM, Licitra G, Portelli G, Di Rosa G, and Carpino S
- Subjects
- Hydrogen-Ion Concentration, Lipids analysis, Sicily, Sodium Chloride analysis, Cheese analysis, Food Handling methods, Salts chemistry, Sodium Chloride chemistry, Temperature
- Abstract
The influence of temperature (12, 15, 18, 21, and 24 degrees C) of saturated brine on salt uptake by 3.8-kg experimental blocks of Ragusano cheese during 24 d of brining was determined. Twenty-six 3.8-kg blocks were made on each of three different days. All blocks were labeled and weighed prior to brining. One block was sampled and analyzed prior to brine salting. Five blocks were placed into each of five different brine tanks at different temperatures. One block was removed from each brine tank after 1, 4, 8, 16, and 24 d of brining, weighed, sampled, and analyzed for salt and moisture content. The weight loss by blocks of cheese after 24 d of brining was higher, with increasing brine temperature, and represented the net effect of moisture loss and salt uptake. The total salt uptake and moisture loss increased with increasing brine temperature. Salt penetrates into cheese through the moisture phase within the pore structure of the cheese. Porosity of the cheese structure and viscosity of the water phase within the pores influenced the rate and extent of salt penetration during 24 d of brining. In a previous study, it was determined that salt uptake at 18 degrees C was faster in 18% brine than in saturated brine due to higher moisture and porosity of the exterior portion of the cheese. In the present study, moisture loss occurred from all cheeses at all temperatures and most of the loss was from the exterior portion of the block during the first 4 d of brining. This loss in moisture would be expected to decrease porosity of the exterior portion and act as a barrier to salt penetration. The moisture loss increased with increasing brine temperature. If this decrease in porosity was the only factor influencing salt uptake, then it would be expected that the cheeses at higher brine temperature would have had lower salt content. However, the opposite was true. Brine temperature must have also impacted the viscosity of the aqueous phase of the cheese. Cheese in lower temperature brine would be expected to have higher viscosity of the aqueous phase and slower salt uptake, even though the cheese at lower brine temperature should have had a more porous structure (favoring faster uptake) than cheese at higher brine temperature. Therefore, changing brine concentration has a greater impact on cheese porosity, while changing brine temperature has a larger impact on viscosity of the aqueous phase of the cheese within the pores in the cheese.
- Published
- 2003
- Full Text
- View/download PDF
26. Genotype by environment interaction for yield and somatic cell score with alternative environmental definitions.
- Author
-
Raffrenato E, Blake RW, Oltenacu PA, Carvalheira J, and Licitra G
- Subjects
- Analysis of Variance, Animal Nutritional Physiological Phenomena, Animals, Breeding, Dairying methods, Female, Genetic Variation, Health Status, Lipids analysis, Male, Milk Proteins analysis, Phenotype, Cattle genetics, Cell Count, Environment, Genotype, Lactation genetics, Milk chemistry
- Abstract
Differential genetic expression in high and low opportunity Sicilian Holstein-Friesian and Brown Swiss herd environments was investigated using endogenous and exogenous variables in a set of three definitions. Results of genetic by environmental interaction were compared using alternative environmental definitions: within herd-year standard deviation for mature equivalent milk yield (HYSD), detectable incidence of normal vs. abnormal (peakless) lactation and herds clustered by causal relationships from high and low frequency use of nutrition, milking, health and animal handling practices. Data for genetic analysis consisted of first-lactation standardized yields of milk, fat and protein, and weighted somatic cell score for 8897 daughters of 825 Holstein-Friesian sires and 1143 daughters of 220 Brown Swiss sires. Components of covariance, heritabilities, and genetic correlations were estimated using bivariate and multivariate sire models for average and contrasting environments for each definition. Sire variances for yields were consistently smaller in the low opportunity environments of both breeds. Except for differential incidence of abnormal lactation in Friesian herds, correlated yield response in less privileged environments was 0.41 to 0.81 as much as in high opportunity environments, a substantial loss. Genetic correlations between HYSD environments for yield traits of Friesian were 0.48 to 0.66 but exceeded 0.80 for other definitions. Less correlated response in somatic cell score was also predicted for environments with low use of yield-enhancing practices (0.66 for Friesian and 0.61 for Brown Swiss), which may have resulted from less health care and poorer milking management. Therefore, unfavorable management interactions likely foster unequal gains from selection in contrasting environments defined exogenously or by incidence of peakless lactation. Conversely, greater genetic as well as phenotypic response is expected from additional inputs of nutrition, health care and milking management.
- Published
- 2003
- Full Text
- View/download PDF
27. Influence of presalting and brine concentration on salt uptake by Ragusano cheese.
- Author
-
Melilli C, Barbano DM, Licitra G, Tumino G, Farina G, and Carpino S
- Subjects
- Hydrogen-Ion Concentration, Osmolar Concentration, Solutions, Cheese analysis, Food Handling methods, Sodium Chloride analysis
- Abstract
The impact of presalting and nonsaturated brine on salt uptake by Ragusano cheese was determined. The study included four treatments: 1) the traditional method using no presalting and saturated brine, 2) presalting and saturated brine, 3) no presalting and 18% brine for 8 d followed by 16 d in saturated brine, and 4) presalting and 18% brine for 8 d followed by 16 d in saturated brine. Cheese blocks were weighed and sampled before brine salting (time 0) and after 1, 4, 8, 16, and 24 d of brining for each treatment. Presalting delivered 60% of the normal level of salt in the center of the block prior to brine salting without decreasing the rate of uptake of salt from either saturated or 18% brine. Use of 18% salt brine for the first 8 d of 24 d of brine salting increased the rate of salt uptake, compared with 24 d in saturated brine. The increased rate of salt uptake with 18% brine compared with saturated brine was related to the impact of salt brine on the moisture content and porosity of the cheese near the surface of the block. Brine with higher salt content causes a rapid loss of moisture from cheese near the surface of the block. Moisture loss causes shrinkage of the cheese structure and decreases porosity, which impedes moisture movement out and salt movement into the block. The use of 18% salt brine for the first 8 d delayed the moisture loss and cheese shrinkage at the exterior of the block and allowed more salt penetration.
- Published
- 2003
- Full Text
- View/download PDF
28. An empirical method for prediction of cheese yield.
- Author
-
Melilli C, Lynch JM, Carpino S, Barbano DM, Licitra G, and Cappa A
- Subjects
- Animals, Caseins analysis, Cattle, Female, Linear Models, Reproducibility of Results, Cheese, Dairying, Lipids analysis, Milk chemistry, Milk Proteins analysis
- Abstract
Theoretical cheese yield can be estimated from the milk fat and casein or protein content of milk using classical formulae, such as the VanSlyke formula. These equations are reliable predictors of theoretical or actual yield based on accurately measured milk fat and casein content. Many cheese makers desire to base payment for milk to dairy farmers on the yield of cheese. In small factories, however, accurate measurement of fat and casein content of milk by either chemical methods or infrared milk analysis is too time consuming and expensive. Therefore, an empirical test to predict cheese yield was developed which uses simple equipment (i.e., clinical centrifuge, analytical balance, and forced air oven) to carry out a miniature cheese making, followed by a gravimetric measurement of dry weight yield. A linear regression of calculated theoretical versus dry weight yields for milks of known fat and casein content was calculated. A regression equation of y = 1.275x + 1.528, where y is theoretical yield and x is measured dry solids yield (r2 = 0.981), for Cheddar cheese was developed using milks with a range of theoretical yield from 7 to 11.8%. The standard deviation of the difference (SDD) between theoretical cheese yield and dry solids yield was 0.194 and the coefficient of variation (SDD/mean x 100) was 1.95% upon cross validation. For cheeses without a well-established theoretical cheese yield equation, the measured dry weight yields could be directly correlated to the observed yields in the factory; this would more accurately reflect the expected yield performance. Payments for milk based on these measurements would more accurately reflect quality and composition of the milk and the actual average recovery of fat and casein achieved under practical cheese making conditions.
- Published
- 2002
- Full Text
- View/download PDF
29. Composition of Ragusano cheese during aging.
- Author
-
Licitra G, Campo P, Manenti M, Portelli G, Scuderi S, Carpino S, and Barbano DM
- Subjects
- Fats analysis, Fatty Acids, Nonesterified analysis, Hydrogen-Ion Concentration, Lipase metabolism, Nitrogen analysis, Proteins analysis, Sodium Chloride analysis, Time Factors, Water, Cheese analysis
- Abstract
Ragusano cheese is a brine-salted pasta filata cheese. Composition changes during 12 mo of aging were determined. Historically, Ragusano cheese has been aged in caves at 14 to 16 degrees C with about 80 to 90% relative humidity. Cheeses (n = 132) included in our study of block-to-block variation were produced by 20 farmhouse cheese makers in the Hyblean plain region of the Province of Ragusa in Sicily. Mean initial cheese block weight was about 14 kg. The freshly formed blocks of cheese before brine salting contained about 45.35% moisture, 25.3% protein, and 25.4% fat, with a pH of 5.25. As result of the brining and aging process, a natural rind forms. After 12 mo of aging, the cheese contained about 33.6% moisture, 29.2% protein, 30.0% fat, and 4.4% salt with a pH of 5.54, but block-to-block variation was large. Both soluble nitrogen content and free fatty acid (FFA) content increased with age. The pH 4.6 acetate buffer and 12% TCA-soluble nitrogen as a percentage of total nitrogen were 16 and 10.7%, respectively, whereas the FFA content was about 643 mg/100 g of cheese at 180 d. Five blocks of cheese were selected at 180 d for a study of variation within block. Composition variation within block was large; the center had higher moisture and lower salt in moisture content than did the outside. Composition variation within blocks favored more proteolysis and softer texture in the center.
- Published
- 2000
- Full Text
- View/download PDF
30. Assessment of the dairy production needs of cattle owners in southeastern Sicily.
- Author
-
Licitra G, Blake RW, Oltenacu PA, Barresi S, Scuderi S, and Van Soest PJ
- Subjects
- Animal Feed, Animals, Climate, Dietary Fiber administration & dosage, Female, Lactation, Milk chemistry, Pregnancy, Seasons, Sicily, Cattle physiology, Dairying, Dietary Proteins administration & dosage
- Abstract
This study was undertaken to investigate research and outreach priorities for Progetto Ibleo (Project Ibleo), a center created in 1990 with tripartite government funding to serve dairy producers in the Hyblean region of Sicily. Data comprised values for production and composition of milk from 1984 to 1989 from 35 herds of Modicana cows on a system based on pasture and that from 69 input-intensive herds of Holstein cows, associated lactation and reproduction measures, and yield and composition of forages from 4 of these farms in 1988. Season had a large effect on the neutral detergent fiber and crude protein composition of forages, production and composition of milk, and predicted yield of fresh Ragusano cheese manufactured from the milk of these cows. The poorest forage quality and the poorest cow performance were observed in summer and fall months (May to October). Lactation curves that were flat, without a discernible peak, or convex were observed for both systems, especially for cows calving in spring and in the dry summer seasons (March to July). These abnormalities, signifying substantial sacrifices in production potential, probably had a complex etiology that stemmed from low nutrient intake and high neutral detergent fiber and low crude protein composition of the grazed and preserved forages. Research and outreach priorities to support the Hyblean dairy industry should include chemical evaluation of forages and other feedstuffs, low moisture ensiling of high quality winter forages, better formulation of diets that are dense with nutrients, and the shifting of calving patterns to better exploit high quality winter forages.
- Published
- 1998
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.