1. Effective organic matter removal via bio-adsorption prior to anammox process and utilization of carbon-rich sludge.
- Author
-
Fu, Kunming, Yang, Wenbing, Fu, Sibo, Bian, Yihao, Huo, Aotong, Guan, Teng, Li, Xueqin, Zhang, Ruibao, and Jing, Hao
- Subjects
- *
ORGANIC compounds removal (Sewage purification) , *CHEMICAL oxygen demand , *SEWAGE , *HETEROTROPHIC bacteria , *BATCH reactors - Abstract
Excessive organic matter in the anaerobic ammonia oxidation (Anammox) leads to the growth of a large number of heterotrophic bacteria, which disrupts the anaerobic ammonia oxidation. The adsorption-anaerobic ammonia oxidation process can effectively reduce excessive organic matter, capturing it instead of consuming it, which is a sustainable development technology. In this study, utilizing the excellent adsorption performance of aerobic granular sludge (AGS), an adsorption-regeneration process was employed to remove organic matter at the front end of the Anammox process through bio-adsorption in an artificial simulated domestic sewage environment, and it was successfully used for denitrification. Stirring rate is a key factor affecting sludge granulation. As a parallel experiment of sludge granulation, two Sequencing Batch Reactors (SBRs) (R1 and R2) were operated simultaneously at different stirring rates. After 153 days, the particle size of the two reactors was analyzed, revealing that the proportion of particles larger than 200 μm was over 50%, and granular sludge was successfully formed in both reactors. Long-term operational results indicate that at a temperature of 16.5 ± 1 °C, varying initial pH levels (6.5, 6.7, 7.2, and 8.5) significantly affect the removal efficiency of chemical oxygen demand (COD). COD is rapidly adsorbed and removed within a short period. Among the tested initial pH values, a pH of 6.7 yielded the best total chemical oxygen demand (tCOD) removal efficiency, achieving up to 95%. Additionally, the study examined the effects of different carbon sources on denitrification, revealing that under carbon-rich conditions, the denitrification rate was highest, reaching 1.44 mg N/(g VSS·h). Compared to endogenous denitrification, the denitrification rate increased by 40%, and the nitrate (NO₃⁻-N) removal efficiency reached 100%. • Granular sludge formation enhances the bio-adsorption of organic matter. • Lower initial pH facilitates rapid bio-adsorption rates. • Carbon-rich sludge denitrification rate matches traditional methods. • Bio-adsorption mitigates the impact of organic matter on anaerobic ammonium oxidation. [ABSTRACT FROM AUTHOR]
- Published
- 2025
- Full Text
- View/download PDF