1. Cell type-specific gene expression underpins remodelling of cell wall pectin in exocarp and cortex during apple fruit development.
- Author
-
Collins PP, O'donoghue EM, Rebstock R, Tiffin HR, Sutherland PW, Schröder R, McAtee PA, Prakash R, Ireland HS, Johnston JW, Atkinson RG, Schaffer RJ, Hallett IC, and Brummell DA
- Subjects
- Cell Wall chemistry, Cell Wall genetics, Epitopes metabolism, Fruit growth & development, Galactans metabolism, Gene Expression Regulation, Developmental, Malus growth & development, Molecular Weight, Plant Epidermis metabolism, Polysaccharides metabolism, Solubility, Transcriptome genetics, Cell Wall metabolism, Fruit genetics, Gene Expression Regulation, Plant, Malus genetics, Pectins metabolism
- Abstract
In apple (Malus×domestica) fruit, the different layers of the exocarp (cuticle, epidermis, and hypodermis) protect and maintain fruit integrity, and resist the turgor-driven expansion of the underlying thin-walled cortical cells during growth. Using in situ immunolocalization and size exclusion epitope detection chromatography, distinct cell type differences in cell wall composition in the exocarp were revealed during apple fruit development. Epidermal cell walls lacked pectic (1→4)-β-d-galactan (associated with rigidity), whereas linear (1→5)-α-l-arabinan (associated with flexibility) was exclusively present in the epidermal cell walls in expanding fruit and then appeared in all cell types during ripening. Branched (1→5)-α-l-arabinan was uniformly distributed between cell types. Laser capture microdissection and RNA sequencing (RNA-seq) were used to explore transcriptomic differences controlling cell type-specific wall modification. The RNA-seq data indicate that the control of cell wall composition is achieved through cell-specific gene expression of hydrolases. In epidermal cells, this results in the degradation of galactan side chains by possibly five β-galactosidases (BGAL2, BGAL7, BGAL10, BGAL11, and BGAL103) and debranching of arabinans by α-arabinofuranosidases AF1 and AF2. Together, these results demonstrate that flexibility and rigidity of the different cell layers in apple fruit during development and ripening are determined, at least in part, by the control of cell wall pectin remodelling., (© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.)
- Published
- 2019
- Full Text
- View/download PDF