7 results on '"Val AL"'
Search Results
2. The physiology of fish in acidic waters rich in dissolved organic carbon, with specific reference to the Amazon basin: Ionoregulation, acid-base regulation, ammonia excretion, and metal toxicity.
- Author
-
Morris C, Val AL, Brauner CJ, and Wood CM
- Subjects
- Animals, Carbon, Dissolved Organic Matter, Fresh Water, Ammonia analysis, Ammonia toxicity, Characiformes
- Abstract
Although blackwaters, named for their rich content of dissolved organic carbon (DOC), are often very poor in ions and very acidic, they support great fish biodiversity. Indeed, about 8% of all freshwater fish species live in the blackwaters of the Rio Negro watershed in the Amazon basin. We review how native fish survive these harsh conditions that would kill most freshwater fish, with a particular focus on the role of DOC, a water quality parameter that has been relatively understudied. DOC, which is functionally defined by its ability to pass through a 0.45-µm filter, comprises a diverse range of compounds formed by the breakdown of organic matter and is quantified by its carbon component that is approximately 50% by mass. Adaptations of fish to acidic blackwaters include minimal acid-base disturbances associated with a unique, largely unknown, high-affinity Na
+ uptake system that is resistant to inhibition by low pH in members of the Characiformes, and very tight regulation of Na+ efflux at low pH in the Cichliformes. Allochthonous (terrigenous) DOC, which predominates in blackwaters, consists of larger, more highly colored, reactive molecules than autochthonous DOC. The dissociation of protons from allochthonous components such as humic and fulvic acids is largely responsible for the acidity of these blackwaters, yet at the same time, these components may help protect organisms against the damaging effects of low water pH. DOC lowers the transepithelial potential (TEP), mitigates the inhibition of Na+ uptake and ammonia excretion, and protects against the elevation of diffusive Na+ loss in fish exposed to acidic waters. It also reduces the gill binding and toxicity of metals. At least in part, these actions reflect direct biological effects of DOC on the gills that are beneficial to ionoregulation. After chronic exposure to DOC, some of these protective effects persist even in the absence of DOC. Two characteristics of allochthonous DOC, the specific absorbance coefficient at 340 nm (determined optically) and the PBI (determined by titration), are indicative of both the biological effectiveness of DOC and the ability to protect against metal toxicity. Future research needs are highlighted, including a greater mechanistic understanding of the actions of DOCs on gill ionoregulatory function, morphology, TEP, and metal toxicity. These should be investigated in a wider range of native fish Orders that inhabit one of the world's greatest biodiversity hotspots for freshwater fishes., (© 2021 Wiley Periodicals LLC.)- Published
- 2021
- Full Text
- View/download PDF
3. Physicochemical properties of the dissolved organic carbon can lead to different physiological responses of zebrafish (Danio rerio) under neutral and acidic conditions.
- Author
-
Sadauskas-Henrique H, Smith DS, Val AL, and Wood CM
- Subjects
- Ammonia, Animals, Gills, Sodium, Dissolved Organic Matter, Zebrafish
- Abstract
Previous studies have suggested that the capacity of natural dissolved organic carbon (DOC) molecules to interact with biological membranes is associated with their aromaticity (SAC
340 ); origin (allochthonous versus autochthonous, FI); molecular weight (Abs254/365 ); and relative fluorescence of DOC moieties (PARAFAC analysis). These interactions may be especially important when fish are challenged by acidic waters, which are known to inhibit the active uptake of Na+ and Cl- , while stimulating diffusive ion losses in freshwater fishes. Therefore, zebrafish were acclimated (7 days, pH 7.0) to five natural DOC sources (10 mg C/L), two from the Amazon Basin and three from Canada, together with a "no-added DOC" control. After the acclimation, fish were challenged by exposure to acidic water (pH 4.0) for 3 h. Osmoregulatory parameters were measured at pH 7.0 and 4.0. Acclimation to the five DOC sources did not disturb Na+ , Cl- and ammonia net fluxes, but resulted in differential elevations in Na+ , K+ ATPase and v-type H+ ATPase activities in fish at pH 7.0. However, after transfer to pH.4.0, the control fish exhibited rapid increases in both enzymes. In contrast the DOC- acclimated animals exhibited unchanged (Na+ , K+ ATPase) or differentially increased (v-type H+ ATPase) activities. Na+ , Cl- and ammonia net fluxes remained unchanged in the control fish, but were differentially elevated in most of the DOC treatments at pH 4.0, relative to the same DOC treatments at pH 7.0. Correlations between the osmoregulatory data the DOCs properties highlight that the DOC properties drive different effects on gill physiology., (© 2021 Wiley Periodicals LLC.)- Published
- 2021
- Full Text
- View/download PDF
4. Changes in gill and air-breathing organ characteristics during the transition from water- to air-breathing in juvenile Arapaima gigas.
- Author
-
Frommel AY, Kwan GT, Prime KJ, Tresguerres M, Lauridsen H, Val AL, Gonçalves LU, and Brauner CJ
- Subjects
- Animals, Fishes, Respiration, Sodium-Potassium-Exchanging ATPase metabolism, Gills, Water
- Abstract
The obligate air-breathing Amazonian fish, Arapaima gigas, hatch as water-breathing larvae but with development, they modify their swim bladder to an air-breathing organ (ABO) while reducing their gill filaments to avoid oxygen loss. Here, we show that significant changes already take place between 4 weeks (1.6 g) and 11 weeks (5 g) post hatch, with a reduction in gill lamellar surface area, increase in gill diffusion distance, and proliferation of the parenchyma in the ABO. By using a variety of methods, we quantified the surface area and diffusion distances of the gills and skin, and the swim bladder volume and anatomical complexity from hatch to 11-week-old juveniles. In addition, we identified the presence of two ionocyte types in the gills and show how these change with development. Until 1.6 g, A. gigas possess only the H
+ -excreting/Na+ -absorbing type, while 5-g fish and adults have an additional ionocyte which likely absorbs H+ and Cl- and excretes HCO3 - . The ionocyte density on the gill filaments increased with age and is likely a compensatory mechanism for maintaining ion transport while reducing gill surface area. In the transition from water- to air-breathing, A. gigas likely employs a trimodal respiration utilizing gills, skin, and ABO and thus avoid a respiratory-ion regulatory compromise at the gills., (© 2021 Wiley Periodicals LLC.)- Published
- 2021
- Full Text
- View/download PDF
5. Colossoma macropomum-A tropical fish model for biology and aquaculture.
- Author
-
Val AL and de Oliveira AM
- Subjects
- Animals, Aquaculture, Biology, Ecosystem, Water, Characiformes
- Abstract
Tambaqui, a species native to the Amazon and Orinoco Basins and their tributaries, has a history marked by biological resilience that makes this species a model for studies focused on ecology, physiology, and fish farming. In addition, it is of economic interest, due to its favorable characteristics for production in farms and its unique flavor. As the tambaqui responds in a unique way to several environmental disturbances of natural origin, the species is often used in environmental studies. Some of these studies have been revisited in this review. We revised aspects related to its natural history, habitats and geographic distribution, physiological and biochemical adaptations, and zootechnical performance. The extraordinary adaptation of the tambaqui is the fast expansion of its lower lip when exposed to low oxygen availability that is improved simultaneously with other adjustments. The resilience of this species to significant alterations in water pH is also surprising, and is incomparable with that of other species, as only when it is exposed to pH 3.5, does the tambaqui begin to present physiological-biochemical disturbances. The analysis of the gene expression of tambaqui specimens under different experimental conditions has shed light on the adaptive mechanisms used by this unique Amazonian species. In this sense, this review sought to gather information regarding the tambaqui, and its many biological features employed to survive environmental challenges., (© 2021 Wiley Periodicals LLC.)
- Published
- 2021
- Full Text
- View/download PDF
6. Take time to look at the fish: Behavioral response to acute thermal challenge in two Amazonian cichlids.
- Author
-
Kochhann D, Sarmento CG, de Oliveira JC, Queiroz HL, Val AL, and Chapman LJ
- Subjects
- Animals, Hypoxia, Swimming, Temperature, Cichlids
- Abstract
Critical thermal maximum (CT
max ) is often used as an index of upper thermal tolerance in fishes; however, recent studies have shown that some fishes exhibit agitation or avoidance behavior well before the CTmax is reached. In this study, we quantified behavioral changes during CTmax trials in two Amazonian cichlids, Apistogramma agassizii and Mesonauta insignis. The thermal agitation temperature (Tag ) was recorded as the temperature at which fish left cover and began swimming in an agitated manner, and four behaviors (duration of sheltering, digging, activity, and aquatic surface respiration [ASR]) were compared before and after Tag . Both A. agassizii and M. insignis exhibited high critical thermal maxima, 40.8°C and 41.3°C, respectively. Agitation temperature was higher in M. insignis (37.3°C) than in A. agassizii (35.4°C), indicating that A. agassizii has a lower temperature threshold at which avoidance behavior is initiated. Activity level increased and shelter use decreased with increased temperatures, and patterns were similar between the two species. Digging behavior increased after Tag in both species, but was higher in A. agassazii and may reflect its substrate-oriented ecology. ASR (ventilating water at the surface film) was extremely rare before Tag , but increased in both cichlid species after Tag and was greater in M. insignis than in A. agassizii. This suggests that fish were experiencing physiological hypoxia at water temperatures approaching CTmax . These results demonstrate that acute thermal challenge can induce a suite of behavioral changes in fishes that may provide additional, ecologically relevant information on thermal tolerance., (© 2021 Wiley Periodicals LLC.)- Published
- 2021
- Full Text
- View/download PDF
7. Climate vulnerability of South American freshwater fish: Thermal tolerance and acclimation.
- Author
-
Campos DF, Amanajás RD, Almeida-Val VMF, and Val AL
- Subjects
- Animals, Climate Change, Fresh Water, South America, Acclimatization, Fishes
- Abstract
Freshwater fish are restricted by their physiology to rivers and lakes, and are generally limited in their capacity to disperse across basins. As a result, there is often a close match between the evolutionary history of river basins and their natural history. Thus, the regional landscape and ecological features, such as temperature, have shaped the evolution and adaptation of local fish assemblages. Climate change is expected to affect fish diversity and increase extinction, especially in low latitudes, and it has been suggested that species that inhabit low latitude species are more susceptible since they live close to their maximum thermal limits and have low capacity for acclimation. To understand the mechanisms of variation in thermal tolerance across a broad-scale of South American fishes is fundamental to be able to assess the vulnerability of species and habitat to global warming. Herein, we present the first attempt to analyze the vulnerability of South American freshwater fish species, based on the review of upper thermal limits of 106 species from a broad range of latitudinal habitats. Our findings show that upper thermal limits decrease with latitude, while the thermal safety margin (TSM) increase. Furthermore, the latitude has little effects on the acclimation response ratio, and the TSM decreased with rising temperatures. These data suggest that thermal phenotypic acclimation has low potential for mitigating global warming. These results indicate that South American fish species living in tropical areas are more susceptible to global warming since they are already living close to their maximum habitat temperature., (© 2021 Wiley Periodicals LLC.)
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.