1. On the origin of dual Lax pairs and their r-matrix structure
- Author
-
Vincent Caudrelier, Jean Avan, Laboratoire de Physique Théorique et Modélisation (LPTM - UMR 8089), Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Laboratoire de Physique Théorique et Modélisation ( LPTM ), Université de Cergy Pontoise ( UCP ), and Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique ( CNRS )
- Subjects
High Energy Physics - Theory ,Poisson bracket ,Integrable system ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,Lax equivalence theorem ,FOS: Physical sciences ,General Physics and Astronomy ,01 natural sciences ,[ PHYS.HTHE ] Physics [physics]/High Energy Physics - Theory [hep-th] ,Schroedinger equation: nonlinear ,symbols.namesake ,field theory: integrability ,0103 physical sciences ,FOS: Mathematics ,0101 mathematics ,Hierarchies ,Classical integrability ,Mathematical Physics ,curvature: 0 ,Mathematics ,Poisson algebra ,Mathematical physics ,Hamiltonian formalism ,Loop algebra ,algebra: Poisson ,Nonlinear Sciences - Exactly Solvable and Integrable Systems ,[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th] ,010308 nuclear & particles physics ,010102 general mathematics ,Mathematical analysis ,Lax representation ,Mathematical Physics (math-ph) ,R-matrix ,Nonlinear Sciences::Exactly Solvable and Integrable Systems ,High Energy Physics - Theory (hep-th) ,Mathematics - Symplectic Geometry ,Phase space ,Lax pair ,pair: Lax ,symbols ,Symplectic Geometry (math.SG) ,[ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph] ,Geometry and Topology ,Exactly Solvable and Integrable Systems (nlin.SI) ,Hamiltonian (quantum mechanics) - Abstract
We establish the algebraic origin of the following observations made previously by the authors and coworkers: (i) A given integrable PDE in $1+1$ dimensions within the Zakharov-Shabat scheme related to a Lax pair can be cast in two distinct, dual Hamiltonian formulations; (ii) Associated to each formulation is a Poisson bracket and a phase space (which are not compatible in the sense of Magri); (iii) Each matrix in the Lax pair satisfies a linear Poisson algebra a la Sklyanin characterized by the {\it same} classical $r$ matrix. We develop the general concept of dual Lax pairs and dual Hamiltonian formulation of an integrable field theory. We elucidate the origin of the common $r$-matrix structure by tracing it back to a single Lie-Poisson bracket on a suitable coadjoint orbit of the loop algebra ${\rm sl}(2,\CC) \otimes \CC (\lambda, \lambda^{-1})$. The results are illustrated with the examples of the nonlinear Schr\"odinger and Gerdjikov-Ivanov hierarchies., Comment: 36 pages, 1 figure. Final version in line with published article. The latter is available for free at https://authors.elsevier.com/a/1VILr1PNYn24TG (until August 18 2017)
- Published
- 2017