1. Ablation of SYK Kinase from Expanded Primary Human NK Cells via CRISPR/Cas9 Enhances Cytotoxicity and Cytokine Production.
- Author
-
Dahlvang JD, Dick JK, Sangala JA, Kennedy PR, Pomeroy EJ, Snyder KM, Moushon JM, Thefaine CE, Wu J, Hamilton SE, Felices M, Miller JS, Walcheck B, Webber BR, Moriarity BS, and Hart GT
- Subjects
- Humans, Syk Kinase genetics, CRISPR-Cas Systems, Killer Cells, Natural, Cytokines, Antibody-Dependent Cell Cytotoxicity, Cytomegalovirus, Cytomegalovirus Infections
- Abstract
CMV infection alters NK cell phenotype and function toward a more memory-like immune state. These cells, termed adaptive NK cells, typically express CD57 and NKG2C but lack expression of the FcRγ-chain (gene: FCER1G, FcRγ), PLZF, and SYK. Functionally, adaptive NK cells display enhanced Ab-dependent cellular cytotoxicity (ADCC) and cytokine production. However, the mechanism behind this enhanced function is unknown. To understand what drives enhanced ADCC and cytokine production in adaptive NK cells, we optimized a CRISPR/Cas9 system to ablate genes from primary human NK cells. We ablated genes that encode molecules in the ADCC pathway, such as FcRγ, CD3ζ, SYK, SHP-1, ZAP70, and the transcription factor PLZF, and tested subsequent ADCC and cytokine production. We found that ablating the FcRγ-chain caused a modest increase in TNF-α production. Ablation of PLZF did not enhance ADCC or cytokine production. Importantly, SYK kinase ablation significantly enhanced cytotoxicity, cytokine production, and target cell conjugation, whereas ZAP70 kinase ablation diminished function. Ablating the phosphatase SHP-1 enhanced cytotoxicity but reduced cytokine production. These results indicate that the enhanced cytotoxicity and cytokine production of CMV-induced adaptive NK cells is more likely due to the loss of SYK than the lack of FcRγ or PLZF. We found the lack of SYK expression could improve target cell conjugation through enhanced CD2 expression or limit SHP-1-mediated inhibition of CD16A signaling, leading to enhanced cytotoxicity and cytokine production., (Copyright © 2023 by The American Association of Immunologists, Inc.)
- Published
- 2023
- Full Text
- View/download PDF