1. Narrowband Mode-Locked Fiber Laser via Spectral-Domain Intermodal Interference.
- Author
-
Gao, Qun, Du, Yueqing, He, Zhiwen, Mao, Dong, and Zhao, Jianlin
- Abstract
We demonstrate a hybrid-structure fiber laser composed of single-mode fiber (SMF) and four-mode fiber (FMF), capable of delivering stable near-chirp-free soliton with the bandwidth of 75 pm. Ascribed to the spectral-domain intermodal interference, the SMF-FMF cavity serves not only as a ring resonator but also as an intrinsic spectral filter. The wavelength of the narrowband soliton is tunable within 10 nm by a polarization controller. Simulation results validate the experimental observations, revealing that the filtering effect simultaneously balances the self-phase modulation induced spectral broadening and saturable absorption induced temporal compression. The narrowband fiber laser is attractive for spectroscopy, quantum optics, and material processing, and offers a promising platform to study the evolution dynamics of few-mode solitons. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF