1. Structures in BCN Ruijsenaars–Schneider models
- Author
-
J. Avan, G. Rollet, arXiv, Import, Laboratoire de Physique Théorique et Hautes Energies (LPTHE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique et Modélisation (LPTM - UMR 8089), and Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)
- Subjects
High Energy Physics - Theory ,[NLIN.NLIN-SI] Nonlinear Sciences [physics]/Exactly Solvable and Integrable Systems [nlin.SI] ,Structure (category theory) ,FOS: Physical sciences ,01 natural sciences ,Matrix (mathematics) ,Poisson bracket ,Mathematics::Quantum Algebra ,Mathematics - Quantum Algebra ,0103 physical sciences ,FOS: Mathematics ,Quantum Algebra (math.QA) ,[NLIN.NLIN-SI]Nonlinear Sciences [physics]/Exactly Solvable and Integrable Systems [nlin.SI] ,Uniqueness ,010306 general physics ,Linear combination ,Mathematics::Symplectic Geometry ,Mathematical Physics ,Mathematical physics ,Mathematics ,[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,Nonlinear Sciences - Exactly Solvable and Integrable Systems ,[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th] ,010308 nuclear & particles physics ,Statistical and Nonlinear Physics ,Exponential function ,Nonlinear Sciences::Exactly Solvable and Integrable Systems ,High Energy Physics - Theory (hep-th) ,Quadratic form ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,[PHYS.HTHE] Physics [physics]/High Energy Physics - Theory [hep-th] ,Exactly Solvable and Integrable Systems (nlin.SI) - Abstract
We construct the classical r-matrix structure for the Lax formulation of BC_N Ruijsenaars-Schneider systems proposed in hep-th 0006004. The r-matrix structure takes a quadratic form similar to the A_N Ruijsenaars-Schneider Poisson bracket behavior, although the dynamical dependence is more complicated. Commuting Hamiltonians stemming from the BC_N Ruijsenaars-Schneider Lax matrix are shown to be linear combinations of particular Koornwinder-van Diejen ``external fields'' Ruijsenaars-Schneider models, for specific values of the exponential one-body couplings. Uniqueness of such commuting Hamiltonians is established once the first of them and the general analytic structure are given., Comment: 18 pages, gzip latex file
- Published
- 2002