1. Discovery of a Series of Macrocycles as Potent Inhibitors of Leishmania Infantum .
- Author
-
Riu F, Ruppitsch LA, Duy Vo D, Hong RS, Tyagi M, Matheeussen A, Hendrickx S, Poongavanam V, Caljon G, Sheikh AY, Sjö P, and Kihlberg J
- Subjects
- Structure-Activity Relationship, Animals, Models, Molecular, Humans, Solubility, Drug Discovery, Crystallography, X-Ray, Parasitic Sensitivity Tests, Leishmania infantum drug effects, Antiprotozoal Agents pharmacology, Antiprotozoal Agents chemistry, Antiprotozoal Agents chemical synthesis, Macrocyclic Compounds pharmacology, Macrocyclic Compounds chemistry, Macrocyclic Compounds chemical synthesis, Plasmodium falciparum drug effects
- Abstract
Macrocycles are prominent among drugs for treatment of infectious disease, with many originating from natural products. Herein we report on the discovery of a series of macrocycles structurally related to the natural product hymenocardine. Members of this series were found to inhibit the growth of Plasmodium falciparum , the parasite responsible for most malaria cases, and of four kinetoplastid parasites. Notably, macrocycles more potent than miltefosine, the only oral drug used for the treatment of the neglected tropical disease visceral leishmaniasis, were identified in a phenotypic screen of Leishmania infantum . In vitro profiling highlighted that potent inhibitors had satisfactory cell permeability with a low efflux ratio, indicating their potential for oral administration, but low solubility and metabolic stability. Analysis of predicted crystal structures suggests that optimization should focus on the reduction of π-π crystal packing interactions to reduce the strong crystalline interactions and improve the solubility of the most potent lead.
- Published
- 2024
- Full Text
- View/download PDF