1. Protective role of ErbB3 signaling in myeloid cells during adaptation to cardiac pressure overload
- Author
-
Igor Prudovsky, Sergey Ryzhov, Michael P. Robich, Amanda J. Favreau-Lessard, Robert A. Koza, Yodit R. Herrmann, Douglas B. Sawyer, Haifeng Yin, and Joanne T. deKay
- Subjects
Male ,0301 basic medicine ,Myeloid ,Receptor, ErbB-3 ,Cardiomegaly ,030204 cardiovascular system & hematology ,Flow cytometry ,Mice ,03 medical and health sciences ,0302 clinical medicine ,Immune system ,ErbB ,medicine ,Animals ,Myeloid Cells ,Receptor ,Molecular Biology ,Mice, Knockout ,Pressure overload ,biology ,medicine.diagnostic_test ,business.industry ,Adaptation, Physiological ,Disease Models, Animal ,030104 developmental biology ,medicine.anatomical_structure ,Integrin alpha M ,Cancer research ,biology.protein ,Female ,Hypertrophy, Left Ventricular ,Antibody ,Cardiology and Cardiovascular Medicine ,business - Abstract
Background Myeloid cells play an important role in a wide variety of cardiovascular disorders, including both ischemic and non-ischemic cardiomyopathies. Neuregulin-1 (NRG-1)/ErbB signaling has recently emerged as an important factor contributing to the control of inflammatory activation of myeloid cells after an ischemic injury. However, the role of ErbB signaling in myeloid cells in non-ischemic cardiomyopathy is not fully understood. This study investigated the role of ErbB3 receptors in the regulation of early adaptive response using a mouse model of transverse aortic constriction (TAC) for non-ischemic cardiomyopathy. Methods and results TAC surgery was performed in groups of age- and sex-matched myeloid cell-specific ErbB3-deficient mice (ErbB3MyeKO) and control animals (ErbB3MyeWT). The number of cardiac CD45 immune cells, CD11b myeloid cells, Ly6G neutrophils, and Ly6C monocytes was determined using flow cytometric analysis. Five days after TAC, survival was dramatically reduced in male but not female ErbB3MyeKO mice or control animals. The examination of lung weight to body weight ratio suggested that acute pulmonary edema was present in ErbB3MyeKO male mice after TAC. To determine the cellular and molecular mechanisms involved in the increased mortality in ErbB3MyeKO male mice, cardiac cell populations were examined at day 3 post-TAC using flow cytometry. Myeloid cells accumulated in control but not in ErbB3MyeKO male mouse hearts. This was accompanied by increased proliferation of Sca-1 positive non-immune cells (endothelial cells and fibroblasts) in control but not ErbB3MyeKO male mice. No significant differences in intramyocardial accumulation of myeloid cells or proliferation of Sca-1 cells were found between the groups of ErbB3MyeKO and ErbB3MyeWT female mice. An antibody-based protein array analysis revealed that IGF-1 expression was significantly downregulated only in ErbB3MyeKO mice hearts compared to control animals after TAC. Conclusion Our data demonstrate the crucial role of myeloid cell-specific ErbB3 signaling in the cardiac accumulation of myeloid cells, which contributes to the activation of cardiac endothelial cells and fibroblasts and development of an early adaptive response to cardiac pressure overload in male mice.
- Published
- 2021
- Full Text
- View/download PDF