1. Effect of several anions on the activity of mitochondrial malate dehydrogenase from pig heart
- Author
-
Montserrat Busquets, Marta Cascante, Josep Ll. Gelpi, Antoni Cortés, and Ana Ruggia
- Subjects
chemistry.chemical_classification ,Chromatography ,Process Chemistry and Technology ,Dimer ,Inorganic chemistry ,Kinetics ,Ionic bonding ,Bioengineering ,Phosphate ,Biochemistry ,Malate dehydrogenase ,Catalysis ,MOPS ,Dissociation constant ,chemistry.chemical_compound ,Enzyme ,chemistry - Abstract
Mitochondrial malate dehydrogenase (mMDH) shows a complex dependence upon ionic environment that includes kinetic and structural effects. We measured mMDH activity in several buffers (phosphate, MOPS, and MES) at pH 6.5 and 7.5, and in the presence of a number of anions, at highly diluted enzyme concentrations where mMDH showed significant loss of activity. Under these conditions, mMDH activity shows a non-linear dependence on enzyme concentration, in agreement with the existence of a dimer–monomer equilibrium, where only the dimeric form is active. According to this hypothesis, the dissociation constant of mMDH dimer has been determined to be 5.4 nM in the MES buffer at pH 6.5. Either the presence of a small anion like phosphate, or an increase of the pH from 6.5 to 7.5 shifts the equilibrium in favor of the dimeric form with the two effects appearing to be additive. To extend the study, we analysed the effect of a number of anions on the mMDH activity in 50 mM MOPS buffer at pH 7.5. All the anions had a dual effect: at low concentrations, they increased the activity of mMDH, while at high concentrations, they inhibited it. A more accurate analysis of the data revealed that the activation capacity of all the anions tested was similar, although they differed in their inhibitory influence. To show these differences more clearly, the experiment was repeated in 50 mM phosphate buffer at pH 7.5, under conditions where almost all activations were due to the buffer. The analysis of the results obtained under these conditions revealed the following sequence of inhibition potency: phosphate
- Published
- 2001
- Full Text
- View/download PDF