1. Temperature controlled decohesion regimes of an elastic chain adhering to a fixed substrate by softening and breakable bonds
- Author
-
Stefano Giordano, Andrea Cannizzo, Giuseppe Florio, Giuseppe Puglisi, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Politecnico di Bari, Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN (AIMAN-FILMS - IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Laboratoire International associé sur les phénomènes Critiques et Supercritiques en électronique fonctionnelle, acoustique et fluidique (LIA LICS/LEMAC), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), GF and GP have been supported by the Italian Ministry MIUR-PRIN project 'Mathematics of active materials: from mechanobiology to smart devices' (2017KL4EF3). GF and GP are supported by GNFM (INdAM) and by the Italian Ministry MISE through the project RAEE SUD-PVP. GF is also supported by INFN through the project QUANTUM, by the FFABR research grant (MIUR) and the PON S.I.ADD. SG has been supported by 'Central Lille' and 'Région Hauts-de-France' under projects MePoFib and MiBaMs., Université catholique de Lille (UCL)-Université catholique de Lille (UCL), and Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA)
- Subjects
Statistics and Probability ,Phase transition ,Materials science ,Biological adhesion ,General Physics and Astronomy ,equilibrium statistical mechanics ,01 natural sciences ,Measure (mathematics) ,010305 fluids & plasmas ,[SPI]Engineering Sciences [physics] ,symbols.namesake ,Chain (algebraic topology) ,ensembles equivalence ,temperature effects on adhesion ,0103 physical sciences ,fragile/ductile transition ,[NLIN]Nonlinear Sciences [physics] ,010306 general physics ,Softening ,Mathematical Physics ,[PHYS]Physics [physics] ,Adhesion/deadhesion processes ,Statistical and Nonlinear Physics ,Statistical mechanics ,Mechanics ,phase transitions ,Modeling and Simulation ,Helmholtz free energy ,Fracture (geology) ,symbols - Abstract
International audience; We study the rate-independent decohesion process for a chain linked to a substrate through a series of breakable elements with a softening mechanism. Such an assumption describes the realistic case when connecting links can undergo softening transitions before breaking. For instance, this is a diffuse mechanism observed both in fracture of soft materials and biological adhesion. The analysis of this model is developed in the framework of equilibrium statistical mechanics. In order to describe mechanically induced detachment of the chain from the substrate both in the cases of hard devices (prescribed extension) or soft devices (applied force), we consider both Helmholtz and Gibbs ensembles. In any case, the model can be exactly solved and is characterized by a phase transition at a given critical temperature, corresponding to the complete detachment of the chain even without mechanical actions. Interestingly, according to the 'size' of the softened region, we observe two different regimes. In one case (fragile regime) during the decohesion the measure of the softened region is negligible, whereas in the other case (ductile regime) we obtain a finite measure of the softened region that is constant, giving a temperature dependent analytic measure of the process zone.
- Published
- 2021
- Full Text
- View/download PDF