1. Voltage transient analysis as a generic tool for solar junction characterization
- Author
-
Daniele Cortecchia, Cesare Soci, H. Diesinger, Chenjin Lu, Boubakeur Ayachi, Maxime Berthe, Rusli, Jean-Pierre Vilcot, Ari Bimo Prakoso, Dominique Deresmes, Nanayang Technological University (NTU), Nanayang Technological University, Nanyang Technological University [Singapour], Institut d’Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520 (IEMN), Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Université Polytechnique Hauts-de-France (UPHF)-Ecole Centrale de Lille-Université Polytechnique Hauts-de-France (UPHF)-Institut supérieur de l'électronique et du numérique (ISEN), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Optoélectronique - IEMN (OPTO - IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Physique - IEMN (PHYSIQUE - IEMN), School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, and Physique-IEMN (PHYSIQUE-IEMN)
- Subjects
Materials science ,Acoustics and Ultrasonics ,Differential capacitance ,Silicon ,Surface photovoltage ,Perovskite solar cell ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,7. Clean energy ,Monocrystalline silicon ,[SPI]Engineering Sciences [physics] ,Condensed Matter::Materials Science ,Voltage Transient ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,ComputingMilieux_MISCELLANEOUS ,Perovskite Solar Cell ,[PHYS]Physics [physics] ,business.industry ,Photovoltaic system ,Carrier lifetime ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Copper indium gallium selenide solar cells ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,chemistry ,Electrical and electronic engineering [Engineering] ,Optoelectronics ,0210 nano-technology ,business - Abstract
Surface photovoltage transients on solar junctions have often been associated with carrier lifetime in the literature. However, the carrier decay in a junction is not governed by a first order carrier decay, but resulting from a differential capacitance interacting with a differential conductivity. This phenomenon is well known as the Kane-Swanson formalism in an engineering context where the carrier density transient is measured by photoconductance with a microwave or infrared beam. In this work, we solve the same differential equations numerically to model the carrier decay in the large signal domain extending over five orders of carrier density. Since the surface voltage is linked to the carrier density by a logarithmic relation, we express the carrier decay as surface photovoltage transients. We show how from photovoltage transients, the same information as from photoconductance can be drawn. To demonstrate the method as a generic tool, it is applied to four types of solar cells, two monocrystalline silicon cells, a Perovskite solar cell, a transition metal oxide/silicon hybrid junction, and a CIGS solar cell. Acquiring photovoltage transients by Kelvin force microscopy allows working on partial junctions without top contact, speeding up research of future photovoltaic materials. Furthermore, parameters may be mapped with a better lateral resolution compared to microwave photoconductance. Accepted version
- Published
- 2018