1. Hybridization of topological surface states with a flat band
- Author
-
Sergey S. Krishtopenko, Frederic Teppe, Mauro Antezza, Laboratoire Charles Coulomb (L2C), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Spectroscopie Térahertz, Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), and Théorie du rayonnement matière et phénomènes quantiques
- Subjects
[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas] ,FOS: Physical sciences ,02 engineering and technology ,Crystal structure ,Topology ,01 natural sciences ,State evolution ,symbols.namesake ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,0103 physical sciences ,General Materials Science ,010306 general physics ,Surface states ,Condensed Matter - Materials Science ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,Condensed Matter - Mesoscale and Nanoscale Physics ,[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph] ,[PHYS.PHYS.PHYS-ATM-PH]Physics [physics]/Physics [physics]/Atomic and Molecular Clusters [physics.atm-clus] ,Materials Science (cond-mat.mtrl-sci) ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Semimetal ,Mathematical Operators ,symbols ,Flat band ,0210 nano-technology ,Hamiltonian (quantum mechanics) ,Fermi Gamma-ray Space Telescope - Abstract
We address the problem of hybridization between topological surface states and a non-topological flat bulk band. Our model, being a mixture of three-dimensional Bernevig-Hughes-Zhang and two-dimensional pseudospin-1 Hamiltonian, allows explicit treatment of the topological surface state evolution by continuously changing the hybridization between the inverted bands and an additional "parasitic" flat band in the bulk. We show that the hybridization with a flat band lying below the edge of conduction band converts the initial Dirac-like surface states into a branch below and one above the flat band. Our results univocally demonstrate that the upper branch of the topological surface states is formed by Dyakonov-Khaetskii surface states known for HgTe since the 1980s. Additionally we explore an evolution of the surface states and the arising of Fermi arcs in Dirac semimetals when the flat band crosses the conduction band., 10 pages, 5 figures
- Published
- 2020
- Full Text
- View/download PDF