1. Synthesis and Characterization of the Novel Nanocomposites Based on Graphene Oxide/PLLA/PEG-PPG/PLCL Hybrids for Mechanical and Biomedical Applications.
- Author
-
Azizli, Mohammad Javad, Honarkar, Hengameh, Vafa, Ehsan, Parham, Somayeh, Rezaeeparto, Katayoon, Azizli, Fatemeh, Kianfar, Mohammad Reza, Zarei, Mohammad Bagher, Amani, Ali Moahammad, and Mokhtary, Masoud
- Subjects
DYNAMIC mechanical analysis ,GRAPHENE oxide ,ETHYLENE glycol ,SCANNING electron microscopes ,CONTACT angle - Abstract
In this research, the synthesis of new nanocomposites based on Poly (L-lactic acid)/ poly (L-lactide- ɛ-caprolactone) PLLA/PLCL with a ratio of 90/10 and different amounts of graphene oxide (GO) (0.1-1%) was put on the agenda. The poly (ethylene glycol)-block-poly (propylene glycol), PEG-PPG, as a compatibilizer was used in each compound to increase the compatibility of the two phases. Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were applied to study the structure of the obtained samples. Also, morphology, mechanical properties, rheological behavior, thermal stability, dynamic mechanical thermal analysis (DMTA), contact angle, and hydro-catalytic degradation were investigated. The results showed that using the GO, and PEG-PPG compatibilizer significantly decreased the average diameter of the dispersed phase of PLCL in the PLLA matrix. In addition, with the increase of GO contents, the mechanical properties, thermal stability contact angle, storage modulus increased, but hydro-catalytic degradation decreased. The results of scanning electron microscope (SEM) and transmission electron microscopy (TEM) approved that the presence of PEG-PPG compatibilizer significantly affects the dispersion of GO in the PLLA/PLCL matrix. So, the synthesized nanocomposite is a good candidate for mechanical and biomedical applications. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF