1. TIMP-1 increases expression and phosphorylation of proteins associated with drug resistance in breast cancer cells.
- Author
-
Hekmat O, Munk S, Fogh L, Yadav R, Francavilla C, Horn H, Würtz SØ, Schrohl AS, Damsgaard B, Rømer MU, Belling KC, Jensen NF, Gromova I, Bekker-Jensen DB, Moreira JM, Jensen LJ, Gupta R, Lademann U, Brünner N, Olsen JV, and Stenvang J
- Subjects
- Amino Acid Sequence, Antineoplastic Agents pharmacology, Breast Neoplasms, Cell Survival drug effects, Cisplatin pharmacology, Consensus Sequence, DNA Topoisomerases, Type I chemistry, DNA Topoisomerases, Type I metabolism, DNA Topoisomerases, Type II chemistry, DNA Topoisomerases, Type II metabolism, DNA-Binding Proteins chemistry, DNA-Binding Proteins metabolism, Female, Gene Expression, Humans, MCF-7 Cells, Molecular Sequence Data, Phosphorylation, Protein Interaction Maps, Proteome chemistry, Topoisomerase Inhibitors pharmacology, Drug Resistance, Neoplasm, Protein Processing, Post-Translational, Proteome metabolism, Tissue Inhibitor of Metalloproteinase-1 physiology
- Abstract
Tissue inhibitor of metalloproteinase 1 (TIMP-1) is a protein with a potential biological role in drug resistance. To elucidate the unknown molecular mechanisms underlying the association between high TIMP-1 levels and increased chemotherapy resistance, we employed SILAC-based quantitative mass spectrometry to analyze global proteome and phosphoproteome differences of MCF-7 breast cancer cells expressing high or low levels of TIMP-1. In TIMP-1 high expressing cells, 312 proteins and 452 phosphorylation sites were up-regulated. Among these were the cancer drug targets topoisomerase 1, 2A, and 2B, which may explain the resistance phenotype to topoisomerase inhibitors that was observed in cells with high TIMP-1 levels. Pathway analysis showed an enrichment of proteins from functional categories such as apoptosis, cell cycle, DNA repair, transcription factors, drug targets and proteins associated with drug resistance or sensitivity, and drug transportation. The NetworKIN algorithm predicted the protein kinases CK2a, CDK1, PLK1, and ATM as likely candidates involved in the hyperphosphorylation of the topoisomerases. Up-regulation of protein and/or phosphorylation levels of topoisomerases in TIMP-1 high expressing cells may be part of the mechanisms by which TIMP-1 confers resistance to treatment with the widely used topoisomerase inhibitors in breast and colorectal cancer.
- Published
- 2013
- Full Text
- View/download PDF