1. Geometric Aspects of a Spin Chain.
- Author
-
Entov, Michael, Polterovich, Leonid, and Ryzhik, Lenya
- Subjects
- *
NONEQUILIBRIUM thermodynamics , *METASTABLE states , *FOKKER-Planck equation , *ISING model , *GENERATING functions - Abstract
We discuss non-equilibrium thermodynamics of the mean-field Ising model from a geometric perspective, focusing on the thermodynamic limit. When the number of spins is finite, the Gibbs equilibria form a smooth Legendrian submanifold in the thermodynamic phase space whose points describe the stable macroscopic states of the system. We describe the convergence of these smooth Legendrian submanifolds, as the number of spins goes to infinity, to a singular Legendrian submanifold, admitting an analytic continuation that contains both the stable and metastable states. We also discuss the relaxation to a Gibbs equilibrium when the physical parameters are changed abruptly. The relaxation is defined via the gradient flow of the free energy with respect to the Wasserstein metric on microscopic states, that is, in the geometric language, via the gradient flow of the generating function of the equilibrium Legendrian with respect to the ghost variables. This leads to a discrete Fokker-Planck equation when the number of spins is finite. We show that in the thermodynamic limit this description is closely related to the seminal model of relaxation proposed by Glauber. Finally, we find a special range of parameters where such relaxation happens instantaneously, along the Reeb chords connecting the initial and the terminal Legendrian submanifolds. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF