1. Automating multi-target tracking of singing humpback whales recorded with vector sensors.
- Author
-
Gruden P, Jang J, Kügler A, Kropfreiter T, Tenorio-Hallé L, Lammers MO, Thode A, and Meyer F
- Subjects
- Animals, Bayes Theorem, Acoustics, Algorithms, Cetacea, Humpback Whale
- Abstract
Passive acoustic monitoring is widely used for detection and localization of marine mammals. Typically, pressure sensors are used, although several studies utilized acoustic vector sensors (AVSs), that measure acoustic pressure and particle velocity and can estimate azimuths to acoustic sources. The AVSs can localize sources using a reduced number of sensors and do not require precise time synchronization between sensors. However, when multiple animals are calling concurrently, automated tracking of individual sources still poses a challenge, and manual methods are typically employed to link together sequences of measurements from a given source. This paper extends the method previously reported by Tenorio-Hallé, Thode, Lammers, Conrad, and Kim [J. Acoust. Soc. Am. 151(1), 126-137 (2022)] by employing and comparing two fully-automated approaches for azimuthal tracking based on the AVS data. One approach is based on random finite set statistics and the other on message passing algorithms, but both approaches utilize the underlying Bayesian statistical framework. The proposed methods are tested on several days of AVS data obtained off the coast of Maui and results show that both approaches successfully and efficiently track multiple singing humpback whales. The proposed methods thus made it possible to develop a fully-automated AVS tracking approach applicable to all species of baleen whales., (© 2023 Acoustical Society of America.)
- Published
- 2023
- Full Text
- View/download PDF