1. A Transition from Localized to Strongly Correlated Electron Behavior and Mixed Valence Driven by Physical or Chemical Pressure in ACo2As2 (A = Eu and Ca)
- Author
-
Michael Shatruk, Alexander Yaroslavtsev, Alexey P. Menushenkov, Huibo Cao, Daniel Haskel, Roman Chernikov, Corey M. Thompson, V. Ovidiu Garlea, Xiaoyan Tan, Kirill Kovnir, and Gilberto Fabbris
- Subjects
education.field_of_study ,Valence (chemistry) ,Condensed matter physics ,Chemistry ,Population ,Fermi level ,Doping ,02 engineering and technology ,General Chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Biochemistry ,Catalysis ,0104 chemical sciences ,symbols.namesake ,Colloid and Surface Chemistry ,Ferromagnetism ,Oxidation state ,symbols ,Density of states ,Antiferromagnetism ,0210 nano-technology ,education - Abstract
We demonstrate that the action of physical pressure, chemical compression, or aliovalent substitution in ACo2As2 (A = Eu and Ca) has a general consequence of causing these antiferromagnetic materials to become ferromagnets. In all cases, the mixed valence triggered at the electropositive A site results in the increase of the Co 3d density of states at the Fermi level. Remarkably, the dramatic alteration of magnetic behavior results from the very minor (0.15 electron) change in the population of the 3d orbitals. The mixed valence state of Eu observed in the high-pressure (HP) form of EuCo2As2 exhibits a remarkable stability, achieving the average oxidation state of +2.25 at 12.6 GPa. In the case of CaCo2As2, substituting even 10% of Eu or La into the Ca site causes ferromagnetic ordering of Co moments. Similar to HP-EuCo2As2, the itinerant 3d ferromagnetism emerges from electronic doping into the Co layer because of chemical compression of Eu sites in Ca0.9Eu0.1Co1.91As2 or direct electron doping in Ca0.85La0.15Co1.89As2. The results reported herein demonstrate the general possibility of amplifying minor localized electronic effects to achieve major changes in material's properties via involvement of strongly correlated electrons.
- Published
- 2016
- Full Text
- View/download PDF