1. Lewis Acid Mediated Hydrosilylation on Porous Silicon Surfaces
- Author
-
Jay Smith, Hee Cheul Choi, Todd W. Geders, Jillian M. Buriak, Michael P. Stewart, Matthew J. Allen, Daniel Raftery, and Leigh T. Canham
- Subjects
chemistry.chemical_classification ,Photoluminescence ,Hydrosilylation ,technology, industry, and agriculture ,General Chemistry ,Porous silicon ,Photochemistry ,Biochemistry ,Catalysis ,chemistry.chemical_compound ,Colloid and Surface Chemistry ,chemistry ,Surface modification ,Lewis acids and bases ,Fourier transform infrared spectroscopy ,Porosity ,Alkyl - Abstract
Lewis acid mediated hydrosilylation of alkynes and alkenes on non-oxidized hydride-terminated porous silicon derivatizes the surface with alkenyl and alkyl functionalities, respectively. A very broad range of chemical groups may be incorporated, allowing for tailoring of the interfacial characteristics of the material. The reaction is shown to protect and stabilize porous silicon surfaces from atmospheric or direct chemical attack without compromising its valuable material properties such as high porosity, surface area and visible room-temperature photoluminescence. The reaction is shown to act on alkenes and alkynes of all possible regiochemistries (terminal and internal alkynes; mono-, cis- and trans-, di-, tri-, and tetrasubstituted alkenes). FTIR as well as liquid- and solid-state NMR spectroscopies show anti-Markovnikov addition and cis stereochemistry in the case of hydrosilylated terminal alkynes. Material hydrosilylated with long-chain hydrophobic alkynes and alkenes shows a substantially slower surface oxidation and hydrolysis rate in air as monitored by long-term FTIR monitoring and chemography. BJH and BET measurements reveal that the surface area and average pore size of the material are reduced only slightly after hydrosilylation, indicating that the porous silicon skeleton remains intact. Elemental analysis and SIMS depth profiling show a consistent level of carbon incorporation throughout the porous silicon which demonstrates that the reaction occurs uniformly throughout the depth of the film. The effects of functionalization on photoluminescence were investigated and are shown to depend on the organic substituents.
- Published
- 1999
- Full Text
- View/download PDF