1. An Unconventional Hydrofullerene C66H4 with Symmetric Heptagons Retrieved in Low-Pressure Combustion
- Author
-
Zuo-Chang Chen, Yang-Rong Yao, Fu Chaoyong, Rong-Bin Huang, Shu-Hui Li, Su-Yuan Xie, Lan-Sun Zheng, Qianyan Zhang, Han-Rui Tian, Wang Kai, Shun-Liu Deng, and Miao-Miao Chen
- Subjects
chemistry.chemical_classification ,Fullerene ,Hydrogen ,chemistry.chemical_element ,General Chemistry ,Carbon black ,010402 general chemistry ,Combustion ,medicine.disease_cause ,01 natural sciences ,Biochemistry ,Catalysis ,Soot ,0104 chemical sciences ,Colloid and Surface Chemistry ,Hydrocarbon ,chemistry ,Chemical physics ,medicine ,Heptagon ,Carbon - Abstract
The combustion has long been applied for industrial synthesis of carbon materials such as fullerenes as well as carbon particles (known as carbon black), but the components and structures of the carbon soot are far from being clarified. Herein, we retrieve an unprecedented hydrofullerene C66H4 from a soot of a low-pressure combustion of benzene-acetylene-oxygen. Unambiguously characterized by single-crystal X-ray diffraction, the C66H4 renders a nonclassical geometry incorporating two heptagons and two pairs of fused pentagons in a C2 v symmetry. The common vertexes of the fused pentagons are bonded with four hydrogen atoms to convert the hydrogen-linking carbon atoms from sp2 to sp3 hybridization, which together with the adjacent heptagons essentially releases the sp2-bond strains on the abutting-pentagon sites of the diheptagonal fused pentagon C66 (dihept-C66). DFT computations suggest the possibility for an in situ hydrogenation process leading to stabilization of the dihept-C66. In addition, the experiments have been carried out to study heptagon-dependent properties of dihept-C66H4, indicating the key responsibility of the heptagon for changing hydrocarbon activity and electronic properties. The present work with the unprecedented double-heptagon-containing hydrofullerene successfully isolated and identified as one of the low-pressure combustion products shows that the heptagon is a new building block for constructing fullerene products in addition to pentagons and hexagons in low-pressure combustion systems.
- Published
- 2019
- Full Text
- View/download PDF