1. Modular Peroxidase-Based Reporters for Detecting Protease Activity and Protein Interactions with Temporal Gating
- Author
-
Guanwei Zhou, Wei Wei Wan, and Wenjing Wang
- Subjects
Colloid and Surface Chemistry ,General Chemistry ,Biochemistry ,Article ,Catalysis - Abstract
Enzymatic reporters have been widely applied to study various biological processes because they can amplify signal through enzymatic reactions and provide good sensitivity. However, there is still a need for modular motifs for designing a series of enzymatic reporters. Here, we report a modular peroxidase-based motif, named CLAPon, that features acid-base coils-caged enhanced ascorbate peroxidase (APEX). We demonstrate the modularity of CLAPon by designing a series of reporters for detecting protease activity and protein-protein interactions (PPIs). CLAPon for protease activity showed a 390-fold fluorescent signal increase upon tobacco etch virus protease cleavage. CLAPon for PPI detection (PPI-CLAPon) has two variants, PPI-CLAPon1.0 and 1.1. PPI-CLAPon1.0 showed a signal to noise ratio (SNR) of up to 107 for high-affinity PPI pairs and enabled imaging with sub-cellular spatial resolution. However, PPI-CLAPon1.1 with higher sensitivity is required for detecting low-affinity PPI pairs. PPI-CLAPon1.0 was further engineered to a reporter with light-dependent temporal gating, called LiPPI-CLAPon1.0, which can detect a 3-minute calcium-dependent PPI with a SNR of 17. LiPPI-CLAPon enables PPI detection within a specific time window with rapid APEX activation and diverse readout. Lastly, PPI-CLAPon1.0 was designed to have chemical gating, providing more versatility to complement the LiPPI-CLAPon. These CLAPon-based reporter designs can be broadly applied to study various signaling processes that involve protease activity and PPIs and provide a versatile platform to design various genetically encoded reporters.
- Published
- 2022