Weijun Ke, Mikael Kepenekian, Jacky Even, Ido Hadar, Xiaotong Li, Mercouri G. Kanatzidis, Peijun Guo, Richard D. Schaller, Claudine Katan, Boubacar Traore, Constantinos C. Stoumpos, Northwestern University [Evanston], Institut des Fonctions Optiques pour les Technologies de l'informatiON (Institut FOTON), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-Centre National de la Recherche Scientifique (CNRS), Argonne National Laboratory [Lemont] (ANL), The Hebrew University of Jerusalem (HUJ), Institut des Sciences Chimiques de Rennes (ISCR), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), W. M. Keck Foundation, Institut Universitaire de France, 1720139, Division of Materials Research, International Institute for Nanotechnology, Northwestern University, R?gion Bretagne, State of Illinois, Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)
International audience; Two-dimensional (2D) halide perovskites have extraordinary optoelectronic properties and structural tunability. Among them, the Dion-Jacobson phases with the inorganic layers stacking exactly on top of each other are less explored. Herein, we present the new series of 2D Dion-Jacobson halide perovskites, which adopt the general formula of A′An-1PbnI3n+1 (A′ = 4-(aminomethyl)pyridinium (4AMPY), A = methylammonium (MA), n = 1−4). By modifying the position of the -CH2NH3+ group from 4AMPY to 3AMPY (3AMPY = 3-(aminomethyl)pyridinium), the stacking of the inorganic layers changes from exactly eclipsed to slightly offset. The perovskite octahedra tilts are also different between the two series, with the 3AMPY series exhibiting smaller bandgaps than the 4AMPY series. Compared to the aliphatic cation of the same size (AMP = (aminomethyl)piperidinium), the aromatic spacers increase the rigidity of the cation, reduce the interlayer spacing and decrease the dielectric mismatch between inorganic layer and the organic spacer, showing the indirect but powerful influence of the organic cations on the structure and consequently on the optical properties of the perovskite materials. All A′An-1PbnI3n+1 compounds exhibit strong photoluminescence (PL) at room temperature. Preliminary solar cell devices based on the n = 4 perovskites as absorbers of both series exhibit promising performances, with a champion power conversion efficiency (PCE) of 9.20 % for (3AMPY)(MA)3Pb4I13 based devices, which is higher than the (4AMPY)(MA)3Pb4I13 and the corresponding aliphatic analogue (3AMP)(MA)3Pb4I13 based ones.