WBAN (Wireless Body Area Network) is a network which is to consistently monitor body signals with implanted or attached sensor nodes. Especially, nodes that are used in medical services have to operate with low power consumption since they are hard to replace, and have to guarantee high data rate and low transmission delay for consistent signal monitor. In this paper, we propose an algorithm that aims to reduce transmission delay and power consumption, and guarantees stable throughput, by assuming the number of active nodes, and followed by dynamically adjusting the random access period and transmission possibilities in a superframe. The assumed number of active nodes may be incorrect since it only relies on the channel status of a previous superframe. Therefore, we assume the number of active nodes and define a pattern. And revise the number of the active nodes with the defined pattern. To evaluate the performance of the proposed algorithm, we have implemented a WBAN environment with the MATLAB. The simulation results show that the proposed algorithm provides better throughput, low power consumption, and low transmission delay when compared to the slotted ALOHA of the IEEE 802.15.6.