1. Reconciling the efficacy and effectiveness of masking on epidemic outcomes.
- Author
-
Yang W and Shaman J
- Subjects
- Humans, Nonlinear Dynamics, Public Health, Pandemics prevention & control, COVID-19 epidemiology, COVID-19 prevention & control
- Abstract
During the COVID-19 pandemic, mask wearing in public settings has been a key control measure. However, the reported effectiveness of masking has been much lower than laboratory measures of efficacy, leading to doubts on the utility of masking. Here, we develop an agent-based model that comprehensively accounts for individual masking behaviours and infectious disease dynamics, and test the impact of masking on epidemic outcomes. Using realistic inputs of mask efficacy and contact data at the individual level, the model reproduces the lower effectiveness as reported in randomized controlled trials. Model results demonstrate that transmission within households, where masks are rarely used, can substantially lower effectiveness, and reveal the interaction of nonlinear epidemic dynamics, control measures and potential measurement biases. Overall, model results show that, at the individual level, consistent masking can reduce the risk of first infection and, over time, reduce the frequency of repeated infection. At the population level, masking can provide direct protection to mask wearers, as well as indirect protection to non-wearers, collectively reducing epidemic intensity. These findings suggest it is prudent for individuals to use masks during an epidemic, and for policymakers to recognize the less-than-ideal effectiveness of masking when devising public health interventions.
- Published
- 2024
- Full Text
- View/download PDF