1. Sialic Acid Binding Sites in VP2 of Bluetongue Virus and Their Use during Virus Entry.
- Author
-
Wu W and Roy P
- Subjects
- Amino Acid Sequence, Animals, Capsid Proteins chemistry, Capsid Proteins genetics, Host-Pathogen Interactions, Lectins metabolism, Mass Spectrometry, Models, Molecular, Protein Binding, Protein Conformation, Receptors, Virus chemistry, Receptors, Virus metabolism, Sialic Acids metabolism, Binding Sites, Bluetongue virology, Bluetongue virus physiology, Capsid Proteins metabolism, Virus Internalization
- Abstract
Bluetongue virus (BTV), a member of the Orbivirus genus, is transmitted by biting midges (gnats, Culicoides sp.) and is one of the most widespread animal pathogens, causing serious outbreaks in domestic animals, particularly in sheep, with high economic impact. The non-enveloped BTV particle is a double-capsid structure of seven proteins and a genome of 10 double-stranded RNA segments. Although the outermost spike-like VP2 acts as the attachment protein during BTV entry, no specific host receptor has been identified for BTV. Recent high-resolution cryo-electron (cryoEM) structures and biological data have suggested that VP2 may interact with sialic acids (SAs). To confirm this, we have generated protein-based nanoparticles displaying multivalent VP2 and used them to probe glycan arrays. The data show that VP2 binds α2,3-linked SA with high affinity but also binds α2,6-linked SA. Further, Maackia amurensis lectin II (MAL II) and Sambucus nigra lectin (SNA), which specifically bind α2,3-linked and α2,6-linked SAs, respectively, inhibited BTV infection and virus growth in susceptible sheep cells while SNA alone inhibited virus growth in Culicoides-derived cells. A combination of hydrogen deuterium exchange mass spectrometry and site-directed mutagenesis allowed the identification of the specific SA binding residues of VP2. This study provides direct evidence that sialic acids act as key receptor for BTV and that the outer capsid protein VP2 specifically binds SA during BTV entry in both mammalian and insect cells. IMPORTANCE To date no receptor has been assigned for non-enveloped bluetongue virus. To determine if the outermost spike-like VP2 protein is responsible for host cell attachment via interaction with sialic acids, we first generated a protein-based VP2-nanoparticle, for the multivalent presentation of recombinant VP2 protein. Using nanoparticles displaying VP2 to probe a glycan array, we identified that VP2 binds both α2,3-linked and α2,6-linked sialic acids. Lectin inhibitors targeting both linkages of sialic acids showed strong inhibition to BTV infection and progeny virus production in mammalian cells; however the inhibition was only seen with the lectin targeting α2,6-linked sialic acid in insect vector cells. In addition, we identified the VP2 sialic acid binding sites in the exposed tip domain. Our data provides direct evidence that sialic acids act as key receptors for BTV attachment and entry in to both mammalian and insect cells.
- Published
- 2022
- Full Text
- View/download PDF