1. Underwater LED-based Lagrangian particle tracking velocimetry.
- Author
-
Viola, Ignazio Maria, Nila, Alex, Davey, Thomas, and Gabl, Roman
- Abstract
A new white-light volumetric flow measurement technique is presented that can be used in large-scale facilities. The technique enables large volumes to be measured with high temporal and spatial resolution and without the need for a class-4 laser. This LED-based Lagrangian particle tracking velocimetry is demonstrated by measuring the tip vortex formation and the near wake of a 1.2 m diameter tidal turbine in a 25 m diameter, 2 m deep tank. Seven streamwise-distributed volumes of interest are combined, each 334 mm long, 244 mm wide and 140 mm deep, reaching up to one diameter downstream of the turbine. The system does not require re-calibration when moved. By assuming a periodic flow field, a phase-averaged flow field was reconstructed with a temporal resolution of 3.9 ms and a spatial resolution of 5.4 mm. The large volume and high time and spatial resolution could enable key research questions to be addressed on high-Reynolds-number flows and could provide valuable benchmark data for numerical model development and code validation. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF