1. On-chip microbial culture for the specific detection of very low levels of bacteria
- Author
-
Sihem Bouguelia, Thierry Vernet, Claire Durmort, Roberto Calemczuk, Thierry Livache, Yoann Roupioz, Maria G Casabona, Sami Slimani, Laure Mondani, Structures et propriétés d'architectures moléculaire (SPRAM - UMR 5819), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut de biologie structurale (IBS - UMR 5075 ), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Thomas, Frank, Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
Microbiological culture ,Microarray ,[SDV.BBM.BS] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,Biomedical Engineering ,Protein Array Analysis ,MESH: Limit of Detection ,Bioengineering ,02 engineering and technology ,Biosensing Techniques ,medicine.disease_cause ,01 natural sciences ,Biochemistry ,Microbiology ,Limit of Detection ,Culture Techniques ,medicine ,Food microbiology ,MESH: Food Microbiology ,Escherichia coli ,Detection limit ,Miniaturization ,biology ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,Bacteria ,MESH: Protein Array Analysis ,010401 analytical chemistry ,General Chemistry ,Microbiologia alimentària ,MESH: Miniaturization ,021001 nanoscience & nanotechnology ,biology.organism_classification ,3. Good health ,0104 chemical sciences ,MESH: Bacteria ,MESH: Culture Techniques ,Protein microarray ,Food Microbiology ,DNA microarray ,0210 nano-technology ,MESH: Biosensing Techniques - Abstract
International audience; Microbial culture continues to be the most common protocol for bacterial detection and identification in medicine and agronomics. Using this process may take days to identify a specific pathogen for most bacterial strains. Surface Plasmon Resonance (SPR) detection is an emerging alternative technology that can be used for the detection of bacteria using protein microarrays although typical limits of detection are in the range of 10(3)-10(6) cfu mL(-1), which is not compatible with most Food Safety regulation requirements. In this work, we combine concomitant "on-chip" microbial culture with sensitive SPR detection of bacteria thus allowing rapid specific detection of bacteria pathogens - including Salmonella enterica serovar Enteritidis, Streptococcus pneumoniae and Escherichia coli O157:H7 - cultured on a protein microarray. This Culture-Capture-Measure (CCM) approach significantly decreases both the number of processing steps and the overall assay time for bacterial detection. Signal analysis of SPR responses allowed the fast and quantitative assessment of bacterial concentrations initially present in the sample as low as 2.8 ± 19.6 cfu per milliliter. Altogether, our results show how simple, easy-to-operate, fluidic-less and lo-tec microarrays can be used with unprocessed samples and yield - in a single assay - both qualitative and quantitative information regarding bacterial contamination.
- Published
- 2013