1. Modulating the Pattern Quality of Micropatterned Multilayer Films Prepared by Layer-by-Layer Self-Assembly
- Author
-
Kookheon Char, Frank Caruso, Bongjun Yeom, Sangcheol Kim, Jinhan Cho, Ho-Sub Kim, Hongseok Jang, and Raehyun Kim
- Subjects
Materials science ,Nanotechnology ,Surfaces and Interfaces ,Surface finish ,Photoresist ,Condensed Matter Physics ,law.invention ,Chemical engineering ,Transition metal ,law ,Ionic strength ,Electrochemistry ,Surface roughness ,General Materials Science ,Self-assembly ,Photolithography ,Thin film ,Spectroscopy - Abstract
Patterned multilayer films composed of poly(allylamine hydrochloride) (PAH) and poly(sodium 4-styrenesulfonate) (PSS) were prepared using dip and spin self-assembly (SA) methods. A silicon substrate was patterned with a photoresist thin film using conventional photolithography, and PAH/PSS multilayers were then deposited onto the substrate surface using dip or spin SA. For spin SA, the photoresist on the substrate was retained, despite the high centrifugal forces involved in depositing the polyelectrolytes (PEs). The patterned multilayer films were formed by immersing the PE-coated substrates in acetone for 10 min. The effect of ionic strength on the pattern quality in dip and spin multilayer patterns (line-edge definition and surface roughness of the patterned region) was investigated by increasing the salt concentration in the PE solution (range 0-1 M). In dip multilayer patterns, the presence of salt increased the film surface roughness and pattern thickness without any deformation of pattern shape. The spin multilayer patterns formed without salt induced a height profile of about 130 nm at the pattern edge, whereas the patterns formed with high salt content (1 M) were extensively washed off the substrates. Well-defined pattern shapes of spin SA multilayers were obtained at an ionic strength of 0.4 M NaCl. Multilayer patterns prepared using spin SA and lift-off methods at the same ionic strength had a surface roughness of about 2 nm, and those prepared using the dip SA and lift-off method had a surface roughness of about 5 nm. The same process was used to prepare well-defined patterns of organic/metallic multilayer films consisting of PE and gold nanoparticles. The spin SA process yielded patterned multilayer films with various lengths and shapes.
- Published
- 2005