1. Adsorption of Native Amino Acids on Nanocrystalline TiO2: Physical Chemistry, QSPR, and Theoretical Modeling
- Author
-
Vladimir Potemkin, Elena Korina, Roman Morozov, Igor Krivtsov, Artyom Shchelokov, Oleg Bol'shakov, Danil Uchaev, Nadezhda Palko, and Maria Grishina
- Subjects
Quantitative structure–activity relationship ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,symbols.namesake ,Adsorption ,Computational chemistry ,Molecular descriptor ,Electrochemistry ,Side chain ,Nanobiotechnology ,titania ,General Materials Science ,Spectroscopy ,chemistry.chemical_classification ,Chemistry ,Biomolecule ,Surfaces and Interfaces ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,proteins ,0104 chemical sciences ,Gibbs free energy ,Amino acid ,adsorption ,symbols ,0210 nano-technology - Abstract
The affinity of biomolecules, such as peptides and proteins, with inorganic surfaces, is a fundamental topic in biotechnology and bionanotechnology. Amino acids are often used as “model” bits of peptides or proteins for studying their properties in different environments and/or developing functional surfaces. Despite great demand for knowledge about amino acid interactions with metal oxide surfaces, studies on the issue represent a fragmentary picture. In this paper, we describe amino acid adsorption on nanocrystalline anatase systematically at uniform conditions. Analysis of the Gibbs free adsorption energy indicated how the aliphatic, aromatic, polar, and charged side chain groups affect the binding affinity of the amino acids. Thermodynamic features of the L-amino acid adsorption receive thorough interpretation with calculated molecular descriptors. Theoretical modelling shows that amino acids complex with TiO2 nanoparticles as zwitterions via ammonium group., This work was financially supported by the Russian Foundation for Basic Research (grant no. 15-03-07834-a). I.K. acknowledge the financial support from Spanish MINECO (CTQ2014-52956-C3-1-R and MAT2016-78155-C2-1-R).
- Published
- 2018
- Full Text
- View/download PDF