1. Reduced muscarinic receptor plasticity in frontal cortex of aged rats after chronic administration of cholinergic drugs.
- Author
-
Pedigo NW Jr and Polk DM
- Subjects
- Adaptation, Physiological, Animals, Atropine Derivatives pharmacology, Male, Oxotremorine pharmacology, Rats, Rats, Inbred F344, Aging, Cerebral Cortex metabolism, Parasympathomimetics pharmacology, Receptors, Cholinergic metabolism
- Abstract
Age-related differences in muscarinic receptor plasticity were observed in young, adult and senescent Fischer 344 rats (3, 9 and 27 months old, respectively) following the chronic, intracerebroventricular (ivt) administration of a cholinergic agonist, oxotremorine, or antagonist, methylatropine. After three weeks treatment of young rats with ivt oxotremorine, the maximum number (Bmax) of 3H-QNB binding sites in frontal cortex, determined by saturation experiments, was reduced by 27%, with no apparent change in the affinity (Kd) of 3H-QNB for the muscarinic receptor. Conversely, chronic ivt methylatropine administered to 3 month old animals caused a 29% increase in Bmax with no significant change in Kd. Adult animals showed a somewhat lesser degree of muscarinic receptor plasticity (16% down-regulation after oxotremorine, 22% up-regulation after methylatropine). However, 3H-QNB binding parameters in frontal cortex from senescent rats were not significantly altered following identical treatments with oxotremorine or methylatropine. Thus, muscarinic receptor adaptation to chronic, cholinergic drug administration was impaired in aged animals. This reduced receptor plasticity with aging could have important implications for the long-term drug treatment of elderly patients and for the therapeutic efficacy of cholinergic drugs in age-related neurological disorders, such as Alzheimer's disease.
- Published
- 1985
- Full Text
- View/download PDF