9 results on '"Jambulingam P"'
Search Results
2. Evaluation of DawaPlus 3.0 and DawaPlus 4.0, deltamethrin–PBO combination nets against pyrethroid-resistant Anopheles culicifacies in experimental huts in India
- Author
-
Gunasekaran, Kasinathan, Sahu, Sudhansu Sekhar, Vijayakumar, Tharmalingam, Subramanian, Swaminathan, Rahi, Manju, and Jambulingam, Purushothaman
- Published
- 2020
- Full Text
- View/download PDF
3. Evaluation of long-lasting indoor residual spraying of deltamethrin 62.5 SC-PE against malaria vectors in India
- Author
-
Sahu, Sudhansu Sekhar, Thankachy, Sonia, Dash, Smrutidhara, Nallan, Krishnamoorthy, Swaminathan, Subramanian, Kasinathan, Gunasekaran, and Purushothaman, Jambulingam
- Published
- 2020
- Full Text
- View/download PDF
4. Evaluation of MAGNet, a long-lasting insecticidal mosquito net against Anopheles fluviatilis in experimental huts in India
- Author
-
Kasinathan, Gunasekaran, Sahu, Sudhansu Sekhar, Tharmalingam, Vijayakumar, Swaminathan, Subramanian, Rahi, Manju, and Purushothaman, Jambulingam
- Published
- 2019
- Full Text
- View/download PDF
5. Impact of community-based presumptive chloroquine treatment of fever cases on malaria morbidity and mortality in a tribal area in Orissa State, India
- Author
-
Sadanandane Candasamy, Jambulingam Purushothaman, and Das Lalit K
- Subjects
Arctic medicine. Tropical medicine ,RC955-962 ,Infectious and parasitic diseases ,RC109-216 - Abstract
Abstract Background In the Global Strategy for Malaria Control, one of the basic elements is early detection and prompt treatment of malaria cases, especially in areas where health care facilities are inadequate. Establishing or reviving the existing drug distribution centers (DDC) at the peripheral levels of health care can achieve this. The DDCs should be operationally feasible, acceptable by community and technical efficient, particularly in remote hard-core malaria endemic areas. Methods Volunteers from villages were selected for distribution of chloroquine and the selection was made either by villagers or head of the village. The services of the volunteers were absolutely free and voluntary in nature. Chloroquine was provided free of charge to all fever cases. The impact was evaluated based on the changes observed in fever days, fever incidence, parasite incidence and parasite prevalence (proportion of persons harbouring malaria parasite) in the community. Comparisons were made between 1st, 2nd and 3rd year of operation in the experimental villages and between the experimental and check areas. Results A total of 411 village volunteers in 378 villages in the experimental community health center with a population of 125,439 treated 88,575 fever cases with a mean annual incidence of 331.8 cases per 1,000 population during the three-year study period. The average morbid days due to fever (AFD) was reduced to 1.6 ± 0.1 from 5.9 ± 2.1 in the experimental villages while it remained at 5.0 ± 1.0 in the check villages. There was a significant reduction, (p < 0.05) in Annual Fever Incidence (AFI) in the experimental hilltop and foothill villages in comparison to check villages. The change in Annual Parasite Incidence (API) was, however, not statistically significant (p > 0.05). In plain villages that were low endemic, the reductions in AFI and API in experimental villages were statistically significant (p < 0.05). There was significant reduction in the parasite prevalence in high endemic villages of the experimental area both during 2nd and 3rd year when compared with the check area (p < 0.05) but no such reduction was observed in low endemic areas (p > 0.0.5). Mortality due to malaria declined by 75% in the experimental villages in the adult age group whereas there was an increasing trend in check villages. Conclusion The study demonstrated that a passive chloroquine distribution system operated by village volunteers in tribal areas is feasible and effective in reducing malaria-related morbidity and mortality.
- Published
- 2008
- Full Text
- View/download PDF
6. Altered environment and risk of malaria outbreak in South Andaman, Andaman & Nicobar Islands, India affected by tsunami disaster
- Author
-
Shriram AN, Natarajan R, Jambulingam Purushothaman, Krishnamoorthy Kaliannagoun, Das Pradeep K, and Sehgal SC
- Subjects
Arctic medicine. Tropical medicine ,RC955-962 ,Infectious and parasitic diseases ,RC109-216 - Abstract
Abstract Background Pools of salt water and puddles created by giant waves from the sea due to the tsunami that occurred on 26th December 2004 would facilitate increased breeding of brackish water malaria vector, Anopheles sundaicus. Land uplifts in North Andaman and subsidence in South Andaman have been reported and subsidence may lead to environmental disturbances and vector proliferation. This warrants a situation analysis and vector surveillance in the tsunami hit areas endemic for malaria transmitted by brackish water mosquito, An. sundaicus to predict the risk of outbreak. Methods An extensive survey was carried out in the tsunami-affected areas in Andaman district of the Andaman and Nicobar Islands, India to assess the extent of breeding of malaria vectors in the habitats created by seawater flooding. Types of habitats in relation to source of seawater inundation and frequency were identified. The salinity of the water samples and the mosquito species present in the larval samples collected from these habitats were recorded. The malaria situation in the area was also analysed. Results South Andaman, covering Port Blair and Ferrargunj sub districts, is still under the recurring phenomenon of seawater intrusion either directly from the sea or through a network of creeks. Both daily cycles of high tides and periodical spring tides continue to cause flooding. Low-lying paddy fields and fallow land, with a salinity ranging from 3,000 to 42,505 ppm, were found to support profuse breeding of An. sundaicus, the local malaria vector, and Anopheles subpictus, a vector implicated elsewhere. This area is endemic for both vivax and falciparum malaria. Malaria slide positivity rate has started increasing during post-tsunami period, which can be considered as an indication of risk of malaria outbreak. Conclusion Paddy fields and fallow land with freshwater, hitherto not considered as potential sites for An. sundaicus, are now major breeding sites due to saline water. Consequently, there is a risk of vector abundance with enhanced malaria transmission potential, due to the vastness of these tsunami-created breeding grounds and likelihood of them becoming permanent due to continued flooding in view of land subsidence. The close proximity of the houses and paucity of cattle may lead to a higher degree of man/vector contact causing a threat of malaria outbreak in this densely populated area. Measures to prevent the possible outbreak of malaria in this tsunami-affected area are discussed.
- Published
- 2005
- Full Text
- View/download PDF
7. An experimental hut evaluation of Olyset Plus, a long-lasting insecticidal net treated with a mixture of permethrin and piperonyl butoxide, against Anopheles fluviatilis in Odisha State, India.
- Author
-
Gunasekaran K, Sahu SS, Vijayakumar T, Subramanian S, Yadav RS, Pigeon O, and Jambulingam P
- Subjects
- Animals, Biological Assay, Female, Humans, India, Volunteers, Anopheles drug effects, Insecticide-Treated Bednets, Insecticides pharmacology, Permethrin pharmacology, Pesticide Synergists pharmacology, Piperonyl Butoxide pharmacology
- Abstract
Background: Fast development of pyrethroid resistance in malaria vectors prompted the development of new vector control tools including combination of insecticides with different modes of action as part of resistance management strategies. Olyset Plus® is a new long-lasting insecticidal net, in which, permethrin and a synergist, piperonyl butoxide (PBO), are incorporated into filaments. Mixture nets such as this may have application against resistant mosquitoes, particularly those whose resistance is based on oxidative metabolism. There may also be enhanced activity against susceptible mosquitoes since mixed function oxidases are involved in a many metabolic activities including activation to form bioactive compounds., Methods: Bio-efficacy of Olyset Plus was evaluated against susceptible malaria vector, Anopheles fluviatilis in experimental huts. Deterrence, blood feeding inhibition, induced exophily and killing effect were measured to assess the bio-efficacy. The results were compared with Olyset Net®, a polyethylene permethrin-incorporated LLIN and a conventionally treated polyester net (with permethrin) washed to just before exhaustion., Results: Results showed significant reduction in entry (treatment: 0.4-0.8; control: 4.2 per trap-night) and increase in exit (56.3-82.9 % and 44.2 %) rates of Anopheles fluviatilis in the treatment arms compared to control (P < 0.05). While blood feeding rates declined in treatment arms (18.8-30.6 %), it increased in control (77.6 %) (P < 0.05). This was further evident from the blood-feeding inhibition rates in treatment arms (60.6-90.6 %). Total mortality was significantly higher in all treatment arms (96.3-100 %) compared to control arm (2 %) (P < 0.05). Chemical analysis for active ingredient (AI) showed retention of 75 and 88 % in Olyset plus and Olyset net respectively after 20 washes. Performance of Olyset Plus washed 20 times was equal to the CTN and Olyset Net against the susceptible malaria vector An. fluviatilis, fulfilling the WHO efficacy criteria of Phase II evaluation for LLIN. However, the benefit of incorporating PBO and permethrin together in a long-lasting treatment could not be demonstrated in the current study as the target vector species was fully susceptible to pyrethroids., Conclusion: Olyset Plus, with its intrinsic bio-efficacy could be an effective vector control tool to prevent transmission of malaria by susceptible vectors like An. fluviatilis. However, the results of the current study need to be further supported by testing the net at village level (Phase III) for community acceptability. Before taking the net to village level, it needs to be verified whether the net is better than pyrethroid nets in terms of bio-efficacy against resistant An. culicifacies, another malaria vector that has developed resistance to synthetic pyrethroids in India.
- Published
- 2016
- Full Text
- View/download PDF
8. Persistent foci of falciparum malaria among tribes over two decades in Koraput district of Odisha State, India.
- Author
-
Sahu SS, Gunasekaran K, Vanamail P, and Jambulingam P
- Subjects
- Adolescent, Adult, Aged, Aged, 80 and over, Child, Child, Preschool, Cross-Sectional Studies, Female, Humans, India epidemiology, Infant, Infant, Newborn, Male, Middle Aged, Plasmodium malariae isolation & purification, Plasmodium vivax isolation & purification, Population Groups, Prevalence, Young Adult, Malaria, Falciparum epidemiology, Plasmodium falciparum isolation & purification
- Abstract
Background: Koraput, a predominantly tribe-inhabited and one of the highly endemic districts of Odisha State that contributes a substantial number of malaria cases to the India's total. Control of malaria in such districts would contribute to change the national scenario on malaria situation. Hence, a study was carried out to measure the magnitude of malaria prevalence in the district to strengthen the malaria control activities., Methods: Prevalence of malaria was assessed through a sample blood survey (SBS) in seven randomly selected community health centres (CHCs). Individuals of all age groups in the villages selected (one in each subcentre) were screened for malaria infection. Both thick and thin smears were prepared from blood samples collected by finger prick, stained and examined for malaria parasites searching 100 fields in each smear. The results of a blood survey (n = 10,733) carried out, as a part of another study, during 1986-87 covering a population of 17,722 spread in 37 villages of Koraput district were compared with the current survey results. Software SPSS version 16.0 was used for data analysis., Result: During the current study, blood survey was done in 135 villages screening 12,045 individuals (16.1% of the total population) and among them, 1,983 (16.5%) were found positive for malaria parasites. Plasmodium falciparum was the major malaria parasite species accounted for 89.1% (1,767) of the total positives; Plasmodium vivax and Plasmodium malariae accounted for 9.3% (184) and 0.2% (5), respectively. Gametocytes were found in 7.7% (n = 152) of the positive cases. The majority of parasite carriers (78.9%) were afebrile. The 1986-87 blood survey showed that of 10,733 people screened, 833 (7.8%) were positive for malaria parasites, 714 (85.7%) with P. falciparum, 86 (10.3%) with P. vivax, 12 (1.4%) with P. malariae and 21 (2.5%) with mixed infections., Conclusion: The results of the current study indicated a rising trend in transmission of malaria in Koraput district compared to the situation during 1986-87 and indicated the necessity for a focused and reinforced approach for the control of the disease by improving people's access to diagnosis and treatment and ensuring implementation of the intervention measures with adequate coverage and compliance.
- Published
- 2013
- Full Text
- View/download PDF
9. Altered environment and risk of malaria outbreak in South Andaman, Andaman & Nicobar Islands, India affected by tsunami disaster.
- Author
-
Krishnamoorthy K, Jambulingam P, Natarajan R, Shriram AN, Das PK, and Sehgal SC
- Subjects
- Animals, Anopheles parasitology, Disease Outbreaks, Disease Reservoirs parasitology, Environmental Monitoring, Epidemiological Monitoring, Geography, Humans, India epidemiology, Indian Ocean Islands epidemiology, Malaria, Falciparum epidemiology, Seasons, Anopheles growth & development, Disasters, Insect Vectors, Seawater, Sentinel Surveillance, Wetlands
- Abstract
Background: Pools of salt water and puddles created by giant waves from the sea due to the tsunami that occurred on 26th December 2004 would facilitate increased breeding of brackish water malaria vector, Anopheles sundaicus. Land uplifts in North Andaman and subsidence in South Andaman have been reported and subsidence may lead to environmental disturbances and vector proliferation. This warrants a situation analysis and vector surveillance in the tsunami hit areas endemic for malaria transmitted by brackish water mosquito, An. sundaicus to predict the risk of outbreak., Methods: An extensive survey was carried out in the tsunami-affected areas in Andaman district of the Andaman and Nicobar Islands, India to assess the extent of breeding of malaria vectors in the habitats created by seawater flooding. Types of habitats in relation to source of seawater inundation and frequency were identified. The salinity of the water samples and the mosquito species present in the larval samples collected from these habitats were recorded. The malaria situation in the area was also analysed., Results: South Andaman, covering Port Blair and Ferrargunj sub districts, is still under the recurring phenomenon of seawater intrusion either directly from the sea or through a network of creeks. Both daily cycles of high tides and periodical spring tides continue to cause flooding. Low-lying paddy fields and fallow land, with a salinity ranging from 3,000 to 42,505 ppm, were found to support profuse breeding of An. sundaicus, the local malaria vector, and Anopheles subpictus, a vector implicated elsewhere. This area is endemic for both vivax and falciparum malaria. Malaria slide positivity rate has started increasing during post-tsunami period, which can be considered as an indication of risk of malaria outbreak., Conclusion: Paddy fields and fallow land with freshwater, hitherto not considered as potential sites for An. sundaicus, are now major breeding sites due to saline water. Consequently, there is a risk of vector abundance with enhanced malaria transmission potential, due to the vastness of these tsunami-created breeding grounds and likelihood of them becoming permanent due to continued flooding in view of land subsidence. The close proximity of the houses and paucity of cattle may lead to a higher degree of man/vector contact causing a threat of malaria outbreak in this densely populated area. Measures to prevent the possible outbreak of malaria in this tsunami-affected area are discussed.
- Published
- 2005
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.