1. Upregulation of BST-2 by Type I Interferons Reduces the Capacity of Vpu To Protect HIV-1-Infected Cells from NK Cell Responses.
- Author
-
Prévost J, Pickering S, Mumby MJ, Medjahed H, Gendron-Lepage G, Delgado GG, Dirk BS, Dikeakos JD, Stürzel CM, Sauter D, Kirchhoff F, Bibollet-Ruche F, Hahn BH, Dubé M, Kaufmann DE, Neil SJD, Finzi A, and Richard J
- Subjects
- CD4-Positive T-Lymphocytes virology, Down-Regulation, GPI-Linked Proteins genetics, HEK293 Cells, HIV-1, Human Immunodeficiency Virus Proteins immunology, Humans, Immune Evasion, Receptors, Virus genetics, Receptors, Virus immunology, Signaling Lymphocytic Activation Molecule Family genetics, Signaling Lymphocytic Activation Molecule Family immunology, Transcriptional Activation, Up-Regulation, Viral Regulatory and Accessory Proteins immunology, Antigens, CD genetics, CD4-Positive T-Lymphocytes immunology, HIV Infections immunology, Human Immunodeficiency Virus Proteins genetics, Interferon Type I pharmacology, Killer Cells, Natural immunology, Viral Regulatory and Accessory Proteins genetics
- Abstract
The HIV-1 accessory protein Vpu enhances viral release by counteracting the restriction factor BST-2. Furthermore, Vpu promotes NK cell evasion by downmodulating cell surface NTB-A and PVR, known ligands of the NK cell receptors NTB-A and DNAM-1, respectively. While it has been established that Vpu's transmembrane domain (TMD) is required for the interaction and intracellular sequestration of BST-2, NTB-A, and PVR, it remains unclear how Vpu manages to target these proteins simultaneously. In this study, we show that upon upregulation, BST-2 is preferentially downregulated by Vpu over its other TMD substrates. We found that type I interferon (IFN)-mediated BST-2 upregulation greatly impairs the ability of Vpu to downregulate NTB-A and PVR. Our results suggest that occupation of Vpu by BST-2 affects its ability to downregulate other TMD substrates. Accordingly, knockdown of BST-2 increases Vpu's potency to downmodulate NTB-A and PVR in the presence of type I IFN treatment. Moreover, we show that expression of human BST-2, but not that of the macaque orthologue, decreases Vpu's capacity to downregulate NTB-A. Importantly, we show that type I IFNs efficiently sensitize HIV-1-infected cells to NTB-A- and DNAM-1-mediated direct and antibody-dependent NK cell responses. Altogether, our results reveal that type I IFNs decrease Vpu's polyfunctionality, thus reducing its capacity to protect HIV-1-infected cells from NK cell responses. IMPORTANCE The restriction factor BST-2 and the NK cell ligands NTB-A and PVR are among a growing list of membrane proteins found to be downregulated by HIV-1 Vpu. BST-2 antagonism enhances viral release, while NTB-A and PVR downmodulation contributes to NK cell evasion. However, it remains unclear how Vpu can target multiple cellular factors simultaneously. Here we provide evidence that under physiological conditions, BST-2 is preferentially targeted by Vpu over NTB-A and PVR. Specifically, we show that type I IFNs decrease Vpu's polyfunctionality by upregulating BST-2, thus reducing its capacity to protect HIV-1-infected cells from NK cell responses. This indicates that there is a hierarchy of Vpu substrates upon IFN treatment, revealing that for the virus, targeting BST-2 as part of its resistance to IFN takes precedence over evading NK cell responses. This reveals a potential weakness in HIV-1's immunoevasion mechanisms that may be exploited therapeutically to harness NK cell responses against HIV-1., (Copyright © 2019 Prévost et al.)
- Published
- 2019
- Full Text
- View/download PDF