1. Prevalence of Extended-Spectrum β-Lactamases Genes in Clinical Isolates of Pseudomonas aeruginosa.
- Author
-
Komijani, Majid, Shahin, Khashayar, Barazandeh, Mohadeseh, and Sajadi, Mehdi
- Subjects
BETA lactamases ,PSEUDOMONAS aeruginosa - Abstract
Background and Objectives: Pseudomonas aeruginosa is an opportunistic pathogen resistant to various antibiotics. The aim of the present study was to study resistant patterns in clinical isolates of P. aeruginosa, classify them into pandrug resistance (PDR), extensive drug resistance (XDR) and multidrug resistance (MDR) groups, and identify extended-spectrum β-lactamase (ESBL)-positive isolates using the phenotypic and genotypic methods. Methods: This cross-sectional study was conducted on 161 P. aeruginosa isolates collected from the city of Isfahan, Iran. Antibiotic susceptibility tests were performed using 11 antimicrobial agents. ESBL-positive strains were identified using the phenotypic and genotypic methods. Results: The highest level of antibiotic resistance was observed against ceftazidime (77.64%). None of the isolates was resistant to polymyxin B. In the phenotypic method, 64 isolates (39.75%) were found as ESLB-positive, whereas 132 isolates (81.98%) were ESBL-positive in the genotypic method. The number of ESBLpositive isolates in the genotypic method was significantly higher than in the phenotypic method. The frequency of XDR and MDR isolates was 50.93% and 27.32%, respectively. None of the isolates was PDR. The frequency of the blaTEM gene was significantly higher than other genes (P<0.0001). Conclusion: It was revealed that the genotypic method was much more accurate in identifying ESBL-positive strains than the phenotypic method. Therefore, use of the molecular method may increase the chance of successful treatment with antibiotics of the β-lactam family. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF