9 results on '"Borasi G"'
Search Results
2. Image quality and dose in computerized tomography: Evaluation of four CT scanners.
- Author
-
Borasi, G., Castellani, G., Domenichini, R., Franchini, M., Granata, M., Torresin, A., and Tosi, G.
- Published
- 1984
- Full Text
- View/download PDF
3. Physical and psychophysical characterization of a novel clinical system for digital mammography.
- Author
-
Rivetti S, Lanconelli N, Bertolini M, Borasi G, Golinelli P, Acchiappati D, and Gallo E
- Subjects
- Algorithms, Automation, Humans, Mammography methods, Models, Theoretical, Software, Mammography instrumentation
- Abstract
Purpose: In recent years, many approaches have been investigated on the development of full-field digital mammography detectors and implemented in practical clinical systems. Some of the most promising techniques are based on flat panel detectors, which, depending on the mechanism involved in the x-ray detection, can be grouped into direct and indirect flat panels. Direct detectors display a better spatial resolution due to the direct conversion of x rays into electron-hole pairs, which do not need an intermediate production of visible light. In these detectors the readout is usually achieved through arrays of thin film transistors (TFTs). However, TFT readout tends to display noise characteristics worse than those from indirect detectors. To address this problem, a novel clinical system for digital mammography has been recently marketed based on direct-conversion detector and optical readout. This unit, named AMULET and manufactured by FUJIFILM, is based on a dual layer of amorphous selenium that acts both as a converter of x rays (first layer) and as an optical switch for the readout of signals (second layer) powered by a line light source. The optical readout is expected to improve the noise characteristics of the detector. The aim is to obtain images with high resolution and low noise, thanks to the combination of optical switching technology and direct conversion with amorphous selenium. In this article, the authors present a characterization of an AMULET system., Methods: The characterization was achieved in terms of physical figures as modulation transfer function (MTF), noise power spectra (NPS), detective quantum efficiency (DQE), and contrast-detail analysis. The clinical unit was tested by exposing it to two different beams: 28 kV Mo/Mo (namely, RQA-M2) and 28 kV W/Rh (namely, W/Rh)., Results: MTF values of the system are slightly worse than those recorded from other direct-conversion flat panels but still within the range of those from indirect flat panels: The MTF values of the AMULET system are about 45% and 15% at 5 and 8 lp/mm, respectively. On the other hand, however, AMULET NNPS results are consistently better than those from direct-conversion flat panels (up to two to three times lower) and flat panels based on scintillation phosphors. DQE results lie around 70% when RQA-M2 beams are used and approaches 80% in the case of W/Rh beams. Contrast-detail analysis, when performed by human observers on the AMULET system, results in values better than those published for other full-field digital mammography systems., Conclusions: The novel clinical unit based on direct-conversion detector and optical reading presents great results in terms of both physical and psychophysical characterizations. The good spatial resolution, combined with excellent noise properties, allows the achievement of very good DQE, better than those published for clinical FFDM systems. The psychophysical analysis confirms the excellent behavior of the AMULET unit.
- Published
- 2009
- Full Text
- View/download PDF
4. IMAT-SIM: a new method for the clinical dosimetry of intensity-modulated arc therapy (IMAT).
- Author
-
Iori M, Cagni E, Nahum AE, and Borasi G
- Subjects
- Algorithms, Humans, Phantoms, Imaging, Radiometry, Radiotherapy Planning, Computer-Assisted, Radiotherapy Dosage, Radiotherapy, Intensity-Modulated
- Abstract
Dynamic-gantry multi-leaf collimator (MLC)-based, intensity-modulated radiotherapy (IMAT) has been proposed as an alternative to tomotherapy. In contrast to fixed-gantry, MLC-based intensity-modulated radiotherapy (IMRT), where commercial treatment planning systems (TPS) or dosimetric analysis software currently provide many automatic tools enabling two-dimensional (2D) detectors (matrix or electronic portal imaging devices) to be used as measurement systems, for the planning and delivery of IMAT these tools are generally not available. A new dosimetric method is proposed to overcome some of these limitations. By converting the MLC files of IMAT beams from arc to fixed gantry-angle modality, while keeping the leaf trajectories equal, IMAT plans can be both simulated in the TPS and executed as fixed-gantry, sliding-window DMLC treatments. In support of this idea, measurements of six IMAT plans, in their double form of original arcs and converted fixed-gantry DMLC beams (IMAT-SIM), have been compared among themselves and with their corresponding IMAT-SIM TPS calculations. Radiographic films and a 2D matrix ionization chamber detector rigidly attached to the accelerator gantry and set into a cubic plastic phantom have been used for these measurements. Finally, the TPS calculation-algorithm implementations of both conformal dynamic MLC arc (CD-ARC) modalities, used for clinical IMAT calculations, and DMLC modalities (IMAT-SIM), proposed as references for validating IMAT plan dose-distributions, have been compared. The comparisons between IMAT and IMAT-SIM delivered beams have shown very good agreement with similar shapes of the measured dose profiles which can achieve a mean deviation (+/-2sigma) of (0.35+/-0.16) mm and (0.37+/-0.14)%, with maximum deviations of 1.5 mm and 3%. Matching the IMAT measurements with their corresponding IMAT-SIM data calculated by the TPS, these deviations remain in the range of (1.01+/-0.28) mm and (-1.76+/-0.42)%, with maximums of 3 mm and 5%, limits generally accepted for IMRT plan dose validation. Differences in the algorithm implementations have been found, but by correcting CD-ARC calculations for the leaf-end transmission offset (LTO) effect the IMAT and IMAT-SIM simulations agree well in terms of final dose distributions. The differences found between IMAT and the IMAT-SIM beam measurements are due to the different controls of leaf motion (via electron gun delay in the latter) that cannot be used in the former to correct possible speed variations in the rotation of the gantry. As the IMAT delivered beams are identical to what the patient will receive during the treatment, and the IMAT-SIM beam calculations made by the TPS reproduce exactly the treatment plans of that patient, the accuracy of this new dosimetric method is comparable to that which is currently used for static IMRT. This new approach of 2D-detector dosimetry, together with the commissioning, quality-assurance, and preclinical dosimetric procedures currently used for IMRT techniques, can be applied and extended to any kind of dynamic-gantry MLC-based treatment modality either CD-ARC or IMAT.
- Published
- 2007
- Full Text
- View/download PDF
5. Comparison of different commercial FFDM units by means of physical characterization and contrast-detail analysis.
- Author
-
Rivetti S, Lanconelli N, Campanini R, Bertolini M, Borasi G, Nitrosi A, Danielli C, Angelini L, and Maggi S
- Subjects
- Equipment Design, Equipment Failure Analysis, Radiographic Image Enhancement methods, Radiographic Image Interpretation, Computer-Assisted methods, Reproducibility of Results, Sensitivity and Specificity, Mammography instrumentation, Radiographic Image Enhancement instrumentation, Radiographic Image Interpretation, Computer-Assisted instrumentation, Transducers
- Abstract
The purpose of this study was to perform a complete evaluation of three pieces of clinical digital mammography equipment. Image quality was assessed by performing physical characterization and contrast-detail (CD) analysis. We considered three different FFDM systems: a computed radiography unit (Fuji "FCR 5000 MA") and two flat-panel units, the indirect conversion a-Si based GE "Senographe 2000D" and the direct conversion a-Si based IMS "Giotto Image MD." The physical characterization was estimated by measuring the MTF, NNPS, and DQE of the detectors with no antiscatter grid and over the clinical range of exposures. The CD analysis was performed using a CDMAM 3.4 phantom and custom software designed for automatic computation of the contrast-detail curves. The physical characterization of the three digital systems confirms the excellent MTF properties of the direct conversion flat-panel detector (FPD). We performed a relative standard deviation (RSD) analysis, for investigating the different components of the noise presented by the three systems. It turned out that the two FPDs show a significant additive component, whereas for the CR system the statistical noise is dominant. The multiplicative factor is a minor constituent for all the systems. The two FPDs demonstrate better DQE, with respect to the CR system, for exposures higher than 70 microGy. The CD analysis indicated that the three systems are not statistically different for detail objects with a diameter greater than 0.3 mm. However, the IMS system showed a statistically significant different response for details smaller than 0.3 mm. In this case, the poor response of the a-Se detector could be attributed to its high-frequency noise characteristics, since its MTF, NEQ, and DQE are not inferior to those of the other systems. The CD results were independent of exposure level, within the investigated clinical range. We observed slight variations in the CD results, due to the changes in the visualization parameters (window/level and magnification factor). This suggests that radiologists would benefit from viewing images using varied window/level and magnification.
- Published
- 2006
- Full Text
- View/download PDF
6. Erratum: "Contrast-detail analysis of three flat panel detectors for digital radiography" [Med. Phys., - (2006)].
- Author
-
Borasi G, Samei E, Bertolini M, Nitrosi A, and Tassoni D
- Published
- 2006
- Full Text
- View/download PDF
7. Contrast-detail analysis of three flat panel detectors for digital radiography.
- Author
-
Borasi G, Samei E, Bertolini M, Nitrosi A, and Tassoni D
- Subjects
- Humans, Models, Statistical, Neoplasms pathology, Phantoms, Imaging, Radiographic Image Enhancement instrumentation, Relative Biological Effectiveness, Contrast Media analysis, Neoplasms diagnosis, Neoplasms diagnostic imaging, Radiographic Image Enhancement methods, X-Ray Intensifying Screens
- Abstract
In this paper we performed a contrast detail analysis of three commercially available flat panel detectors, two based on the indirect detection mechanism (GE Revolution XQ/i, system A, and Trixell/Philips Pixium 4600, system B) and one based on the direct detection mechanism (Hologic DirectRay DR 1000, system C). The experiment was conducted using standard x-ray radiation quality and a widely used contrast-detail phantom. Images were evaluated using a four alternative forced choice paradigm on a diagnostic-quality softcopy monitor. At the low and intermediate exposures, systems A and B gave equivalent performances. At the high dose levels, system A performed better than system B in the entire range of target sizes, even though the pixel size of system A was about 40% larger than that of system B. At all the dose levels, the performances of the system C (direct system) were lower than those of system A and B (indirect systems). Theoretical analyses based on the Perception Statistical Model gave similar predicted SNRT values corresponding to an observer efficiency of about 0.08 for systems A and B and 0.05 for system C.
- Published
- 2006
- Full Text
- View/download PDF
8. Determination of the detective quantum efficiency of a digital x-ray detector: comparison of three evaluations using a common image data set.
- Author
-
Neitzel U, Günther-Kohfahl S, Borasi G, and Samei E
- Subjects
- Computer Simulation, Models, Theoretical, Radiographic Image Interpretation, Computer-Assisted, X-Rays
- Abstract
The detective quantum efficiency (DQE) of an x-ray digital imaging detector was determined independently by the three participants of this study, using the same data set consisting of edge and flat field images. The aim was to assess the possible variation in DQE originating from established, but slightly different, data processing methods used by different groups. For the case evaluated in this study differences in DQE of up to +/-15% compared to the mean were found. The differences could be traced back mainly to differences in the modulation transfer function (MTF) and noise power spectrum (NPS) determination. Of special importance is the inclusion of a possible low-frequency drop in MTF and the proper handling of signal offsets for the determination of the NPS. When accounting for these factors the deviation between the evaluations reduced to approximately +/-5%. It is expected that the recently published standard on DQE determination will further reduce variations in the data evaluation and thus in the results of DQE measurements.
- Published
- 2004
- Full Text
- View/download PDF
9. On site evaluation of three flat panel detectors for digital radiography.
- Author
-
Borasi G, Nitrosi A, Ferrari P, and Tassoni D
- Subjects
- Equipment Failure Analysis standards, Radiographic Image Enhancement standards, Radiometry standards, Reproducibility of Results, Sensitivity and Specificity, Technology Assessment, Biomedical standards, Equipment Failure Analysis methods, Radiographic Image Enhancement instrumentation, Radiometry methods, Technology Assessment, Biomedical methods, Transducers, X-Ray Intensifying Screens
- Abstract
During a tender we evaluated the image performance of three commercially available active matrix flat panel imagers (AMFPI) for general radiography, one based on direct detection method (Se photoconductor) the other two on indirect detection method (CsI phosphor). Basic image quality parameters (MTF, NNPS, DQE) were evaluated with particular attention to dose and energy dependence. As it is known, presampling modulation transfer function (MTF) of selenium based detector is very high (at 70 kV, 2 cycles/mm, 2.5 microGy, about 0.80). Indirect detection panels exhibit a comparable (lower) resolution (at 70 kV, 2 cycles/mm, 2.5 microGy, MTF is about 0.34 for both the systems analyzed) and a more pronounced energy and dose dependence could also be noted in one of them. As a consequence of the very high resolution, the normalized noise power spectrum (NNPS) of the direct system is substantially flat, very similar to a white noise. Considering that the sensitive layer of all detectors is the same (0.5 mm), the relatively higher NNPS values are related to selenium absorption properties (lower Z respect to CsI:Tl) and detector inherent noise. NNPSs of the other systems, at low frequencies, are comparable but the frequency dependence is significantly different. At 70 kV, 2.5 microGy, 0.5 cycles/mm detective quantum efficiency (DQE) is about 0.35 for the direct detection system, and about the same (0.6) for the indirect ones. The combined effect of additive and multiplicative noise components makes DQE dependence on dose not monotonic. DQE present a maximum for an intermediate exposure. This complex behavior may be useful to characterize the systems in terms of the monodimensional integral over the frequency of DQE (IDQE). Both visual contrast-detail experiment and the direct evaluation of the signal-to-noise ratio confirmed, at least in a qualitative way, the system performances predicted by IDQE.
- Published
- 2003
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.