1. Impaired immune signaling and changes in the lung microbiome precede secondary bacterial pneumonia in COVID-19.
- Author
-
Tsitsiklis A, Zha BS, Byrne A, DeVoe C, Rackaityte E, Levan S, Sunshine S, Mick E, Ghale R, Love C, Tarashansky AJ, Pisco A, Albright J, Jauregui A, Sarma A, Neff N, Serpa PH, Deiss TJ, Kistler A, Carrillo S, Ansel KM, Leligdowicz A, Christenson S, Detweiler A, Jones NG, Wu B, Darmanis S, Lynch SV, DeRisi JL, Matthay MA, Hendrickson CM, Kangelaris KN, Krummel MF, Woodruff PG, Erle DJ, Rosenberg O, Calfee CS, and Langelier CR
- Abstract
Secondary bacterial infections, including ventilator-associated pneumonia (VAP), lead to worse clinical outcomes and increased mortality following viral respiratory infections including in patients with coronavirus disease 2019 (COVID-19). Using a combination of tracheal aspirate bulk and single-cell RNA sequencing we assessed lower respiratory tract immune responses and microbiome dynamics in 23 COVID-19 patients, 10 of whom developed VAP, and eight critically ill uninfected controls. At a median of three days (range: 2-4 days) before VAP onset we observed a transcriptional signature of bacterial infection. At a median of 15 days prior to VAP onset (range: 8-38 days), we observed a striking impairment in immune signaling in COVID-19 patients who developed VAP. Longitudinal metatranscriptomic analysis revealed disruption of lung microbiome community composition in patients with VAP, providing a connection between dysregulated immune signaling and outgrowth of opportunistic pathogens. These findings suggest that COVID-19 patients who develop VAP have impaired antibacterial immune defense detectable weeks before secondary infection onset.
- Published
- 2021
- Full Text
- View/download PDF