1. The colonization factor CS6 of enterotoxigenic Escherichia coli contributes to host cell invasion.
- Author
-
Ayibieke, Alafate, Wajima, Takeaki, Kano, Shigeyuki, Chatterjee, Nabendu Sekhar, and Hamabata, Takashi
- Subjects
- *
ESCHERICHIA coli , *BACTERIAL cell walls , *INTESTINAL mucosa , *CELL communication , *EPITHELIAL cells - Abstract
Enterotoxigenic Escherichia coli (ETEC) is one of the main causes of diarrhea in children and travelers in low-income regions. The virulence of ETEC is attributed to its heat-labile and heat-stable enterotoxins, as well as its colonization factors (CFs). CFs are essential for ETEC adherence to the intestinal epithelium. However, its invasive capability remains unelucidated. In this study, we demonstrated that the CS6-positive ETEC strain 4266 can invade mammalian epithelial cells. The invasive capability was reduced in the 4266 ΔCS6 mutant but reintroduction of CS6 into this mutant restored the invasiveness. Additionally, the laboratory E. coli strain Top 10, which lacks the invasive capability, was able to invade Caco-2 cells after gaining the CS6-expressing plasmid pCS6. Cytochalasin D inhibited cell invasion in both 4266 and Top10 pCS6 cells, and F-actin accumulation was observed near the bacteria on the cell membrane, indicating that CS6-positive bacteria were internalized via actin polymerization. Other cell signal transduction inhibitors, such as genistein, wortmannin, LY294002, PP1, and Ro 32–0432, inhibited the CS6-mediated invasion of Caco-2 cells. The internalized bacteria of both 4266 and Top10 pCS6 strains were able to survive for up to 48 h, and 4266 cells were able to replicate within Caco-2 cells. Immunofluorescence microscopy revealed that the internalized 4266 cells were present in bacteria-containing vacuoles, which underwent a maturation process indicated by the recruitment of the early endosomal marker EEA-1 and late endosomal marker LAMP-1 throughout the infection process. The autophagy marker LC3 was also observed near these vacuoles, indicating the initiation of LC-3-associated phagocytosis (LAP). However, intracellular bacteria continued to replicate, even after the initiation of LAP. Moreover, intracellular filamentation was observed in 4266 cells at 24 h after infection. Overall, this study shows that CS6, in addition to being a major CF, mediates cell invasion. This demonstrates that once internalized, CS6-positive ETEC is capable of surviving and replicating within host cells. This capability may be a key factor in the extended and recurrent nature of ETEC infections in humans, thus highlighting the critical role of CS6. • Colonization factor CS6 in ETEC enables bacteria to invade epithelial cells. • Cell signaling pathways and actin polymerization are involved in the invasion. • Internalized bacteria are packaged into vacuoles. • These vacuoles undergo maturation that resembles the endocytic pathway. • Internalized CS6-positive ETEC is able to survive and replicate within cells. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF