1. Genome drafts of four phytoplasma strains of the ribosomal group 16SrIII.
- Author
-
Saccardo F, Martini M, Palmano S, Ermacora P, Scortichini M, Loi N, and Firrao G
- Subjects
- Bacterial Proteins genetics, Base Sequence, DNA, Bacterial genetics, DNA, Ribosomal genetics, Molecular Sequence Data, Phytoplasma classification, Phytoplasma isolation & purification, Dictamnus microbiology, Genome, Bacterial, Heracleum microbiology, Phytoplasma genetics, Plant Diseases microbiology, RNA, Ribosomal, 16S genetics, Vaccinium microbiology
- Abstract
By applying a coverage-based read selection and filtration through a healthy plant dataset, and a post-assembly contig selection based on homology and linkage, genome sequence drafts were obtained for four phytoplasma strains belonging to the 16SrIII group (X disease clade), namely Vaccinium Witches' Broom phytoplasma (647 754 nt in 272 contigs), Italian Clover Phyllody phytoplasma strain MA (597 245 nt in 197 contigs), Poinsettia branch-inducing phytoplasma strain JR1 (631 440 nt in 185 contigs) and Milkweed Yellows phytoplasma (583 806 nt in 158 contigs). Despite assignment to different 16SrIII subgroups, the genomes of the four strains were similar, comprising a highly conserved core (92-98 % similar in their nucleotide sequence among each other over alignments about 500 kb in length) and a minor strain-specific component. As far as their protein complement was concerned, they did not differ significantly in their basic metabolism potential from the genomes of other wide-host-range phytoplasmas sequenced previously, but were distinct from strains of other species, as well as among each other, in genes encoding functions conceivably related to interactions with the host, such as membrane trafficking components, proteases, DNA methylases, effectors and several hypothetical proteins of unknown function, some of which are likely secreted through the Sec-dependent secretion system. The four genomes displayed a group of genes encoding hypothetical proteins with high similarity to a central domain of IcmE/DotG, a core component of the type IVB secretion system of Gram-negative Legionella spp. Conversely, genes encoding functional GroES/GroEL chaperones were not detected in any of the four drafts. The results also indicated the significant role of horizontal gene transfer among different 'Candidatus Phytoplasma' species in shaping phytoplasma genomes and promoting their diversity.
- Published
- 2012
- Full Text
- View/download PDF