1. High Performance Pd/4H-SiC Epitaxial Schottky Barrier Radiation Detectors for Harsh Environment Applications
- Author
-
Krishna C. Mandal, Sandeep K. Chaudhuri, and Ritwik Nag
- Subjects
4H-SiC ,deep level transient spectroscopy (DLTS) ,defects in semiconductors ,epitaxial layer ,radiation detection ,Schottky barrier diode ,Mechanical engineering and machinery ,TJ1-1570 - Abstract
Although many refractory metals have been investigated as the choice of contact metal in 4H-SiC devices, palladium (Pd) as a Schottky barrier contact for 4H-SiC radiation detectors for harsh environment applications has not been investigated adequately. Pd is a refractory metal with high material weight-to-thickness ratio and a work function as high as nickel, one of the conventional metal contacts for high performing 4H-SiC Schottky barrier detectors (SBDs). In this article, Pd/4H-SiC epitaxial SBDs have been demonstrated for the first time as a superior self-biased (0 V applied bias) radiation detector when compared to benchmark Ni/4H-SiC SBDs. The Pd/4H-SiC SBD radiation detectors showed a very high energy resolution of 1.9% and 0.49% under self- and optimized bias, respectively, for 5486 keV alpha particles. The SBDs demonstrated a built-in voltage (Vbi) of 2.03 V and a hole diffusion length (Ld) of 30.8 µm. Such high Vbi and Ld led to an excellent charge collection efficiency of 76% in the self-biased mode. Capacitance mode deep level transient spectroscopy (DLTS) results revealed that the “lifetime-killer” Z1/2 trap centers were present in the 4H-SiC epilayer. Another deep level trap was located at 1.09 eV below the conduction band minimum and resembles the EH5 trap with a concentration of 1.98 × 1011 cm−3 and capture cross-section 1.7 × 10−17 cm−2; however, the detector performance was found to be limited by charge trapping in the Z1/2 center. The results presented in this article revealed the unexplored potential of a wide bandgap semiconductor, SiC, as high-efficiency self-biased radiation detectors. Such high performance self-biased radiation detectors are poised to address the longstanding problem of designing self-powered sensor devices for harsh environment applications e.g., advanced nuclear reactors and deep space missions.
- Published
- 2023
- Full Text
- View/download PDF