1. Optimizing Flexible Microelectrode Designs for Enhanced Efficacy in Electrical Stimulation Therapy
- Author
-
Lihong Qi, Zeru Tao, Mujie Liu, Kai Yao, Jiajie Song, Yuxuan Shang, Dan Su, Na Liu, Yongwei Jiang, and Yuheng Wang
- Subjects
flexible ,serpentine structure ,MEMS ,electrical stimulation therapy ,chronic wound healing ,Mechanical engineering and machinery ,TJ1-1570 - Abstract
To investigate the impact of electrode structure on Electrical Stimulation Therapy (EST) for chronic wound healing, this study designed three variants of flexible microelectrodes (FMs) with Ag-Cu coverings (ACCs), each exhibiting distinct geometrical configurations: hexagonal, cross-shaped, and serpentine. These were integrated with PPY/PDA/PANI (3/6) (full name: polypyrrole/polydopamine/polyaniline 3/6). Hydrogel dressing comprehensive animal studies, coupled with detailed electrical and mechanical modeling and simulations, were conducted to assess their performance. Results indicated that the serpentine-shaped FM outperformed its counterparts in terms of flexibility and safety, exhibiting minimal thermal effects and a reduced risk of burns. Notably, FMs with metal coverings under 3% demonstrated promising potential for optoelectronic self-powering capabilities. Additionally, simulation data highlighted the significant influence of hydrogel non-uniformity on the distribution of electrical properties across the skin surface, providing critical insights for optimizing EST protocols when employing hydrogel dressings.
- Published
- 2024
- Full Text
- View/download PDF