1. Genome and RNA sequencing were essential to reveal cryptic intronic variants associated to defective ATP6AP1 mRNA processing.
- Author
-
Morales-Romero B, Muñoz-Pujol G, Artuch R, García-Cazorla A, O'Callaghan M, Sykut-Cegielska J, Campistol J, Moreno-Lozano PJ, Oud MM, Wevers RA, Lefeber DJ, Esteve-Codina A, Yepez VA, Gagneur J, Wortmann SB, Prokisch H, Ribes A, García-Villoria J, and Tort F
- Subjects
- Humans, Male, Vacuolar Proton-Translocating ATPases genetics, Congenital Disorders of Glycosylation genetics, Congenital Disorders of Glycosylation diagnosis, Congenital Disorders of Glycosylation pathology, Mutation, Whole Genome Sequencing, Exome Sequencing, Sequence Analysis, RNA, Intellectual Disability genetics, Intellectual Disability diagnosis, Intellectual Disability pathology, Child, RNA Splicing genetics, Child, Preschool, Introns genetics, RNA, Messenger genetics
- Abstract
The diagnosis of Mendelian disorders has notably advanced with integration of whole exome and genome sequencing (WES and WGS) in clinical practice. However, challenges in variant interpretation and uncovered variants by WES still leave a substantial percentage of patients undiagnosed. In this context, integrating RNA sequencing (RNA-seq) improves diagnostic workflows, particularly for WES inconclusive cases. Additionally, functional studies are often necessary to elucidate the impact of prioritized variants on gene expression and protein function. Our study focused on three unrelated male patients (P1-P3) with ATP6AP1-CDG (congenital disorder of glycosylation), presenting with intellectual disability and varying degrees of hepatopathy, glycosylation defects, and an initially inconclusive diagnosis through WES. Subsequent RNA-seq was pivotal in identifying the underlying genetic causes in P1 and P2, detecting ATP6AP1 underexpression and aberrant splicing. Molecular studies in fibroblasts confirmed these findings and identified the rare intronic variants c.289-233C > T and c.289-289G > A in P1 and P2, respectively. Trio-WGS also revealed the variant c.289-289G > A in P3, which was a de novo change in both patients. Functional assays expressing the mutant alleles in HAP1 cells demonstrated the pathogenic impact of these variants by reproducing the splicing alterations observed in patients. Our study underscores the role of RNA-seq and WGS in enhancing diagnostic rates for genetic diseases such as CDG, providing new insights into ATP6AP1-CDG molecular bases by identifying the first two deep intronic variants in this X-linked gene. Additionally, our study highlights the need to integrate RNA-seq and WGS, followed by functional validation, in routine diagnostics for a comprehensive evaluation of patients with an unidentified molecular etiology., Competing Interests: Declaration of competing interest The authors declare no conflict of interest., (Copyright © 2024 Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF