1. Structures of cytochrome P450 2B6 bound to 4-benzylpyridine and 4-(4-nitrobenzyl)pyridine: insight into inhibitor binding and rearrangement of active site side chains.
- Author
-
Shah MB, Pascual J, Zhang Q, Stout CD, and Halpert JR
- Subjects
- Amino Acid Sequence, Aryl Hydrocarbon Hydroxylases chemistry, Catalytic Domain physiology, Crystallography, X-Ray, Cytochrome P-450 CYP2B6, Enzyme Inhibitors metabolism, Enzyme Inhibitors pharmacology, Humans, Molecular Sequence Data, Oxidoreductases, N-Demethylating chemistry, Protein Binding physiology, Protein Conformation, Pyridines chemistry, Pyridines pharmacology, Aryl Hydrocarbon Hydroxylases antagonists & inhibitors, Aryl Hydrocarbon Hydroxylases metabolism, Oxidoreductases, N-Demethylating antagonists & inhibitors, Oxidoreductases, N-Demethylating metabolism, Pyridines metabolism
- Abstract
The biochemical, biophysical, and structural analysis of the cytochrome P450 2B subfamily of enzymes has provided a wealth of information regarding conformational plasticity and substrate recognition. The recent X-ray crystal structure of the drug-metabolizing P450 2B6 in complex with 4-(4-chlorophenyl)imidazole (4-CPI) yielded the first atomic view of this human enzyme. However, knowledge of the structural basis of P450 2B6 specificity and inhibition has remained limited. In this study, structures of P450 2B6 were determined in complex with the potent inhibitors 4-benzylpyridine (4-BP) and 4-(4-nitrobenzyl)pyridine (4-NBP). Comparison of the present structures with the previous P450 2B6-4-CPI complex showed that reorientation of side chains of the active site residue Phe206 on the F-helix and Phe297 on the I-helix was necessary to accommodate the inhibitors. However, P450 2B6 does not require any major side chain rearrangement to bind 4-NBP compared with 4-BP, and the enzyme provides no hydrogen-bonding partners for the polar nitro group of 4-NBP within the hydrophobic active site. In addition, on the basis of these new structures, substitution of residue 172 with histidine as observed in the single nucleotide polymorphism Q172H and in P450 2B4 may contribute to a hydrogen bonding network connecting the E- and I-helices, thereby stabilizing active site residues on the I-helix. These results provide insight into the role of active site side chains upon inhibitor binding and indicate that the recognition of the benzylpyridines in the closed conformation structure of P450 2B6 is based solely on hydrophobicity, size, and shape.
- Published
- 2011
- Full Text
- View/download PDF