4 results on '"J. Rucker"'
Search Results
2. Correction: Dose response of the 16p11.2 distal copy number variant on intracranial volume and basal ganglia.
- Author
-
Sønderby IE, Gústafsson Ó, Doan NT, Hibar DP, Martin-Brevet S, Abdellaoui A, Ames D, Amunts K, Andersson M, Armstrong NJ, Bernard M, Blackburn N, Blangero J, Boomsma DI, Bralten J, Brattbak HR, Brodaty H, Brouwer RM, Bülow R, Calhoun V, Caspers S, Cavalleri G, Chen CH, Cichon S, Ciufolini S, Corvin A, Crespo-Facorro B, Curran JE, Dale AM, Dalvie S, Dazzan P, de Geus EJC, de Zubicaray GI, de Zwarte SMC, Delanty N, den Braber A, Desrivières S, Donohoe G, Draganski B, Ehrlich S, Espeseth T, Fisher SE, Franke B, Frouin V, Fukunaga M, Gareau T, Glahn DC, Grabe H, Groenewold NA, Haavik J, Håberg A, Hashimoto R, Hehir-Kwa JY, Heinz A, Hillegers MHJ, Hoffmann P, Holleran L, Hottenga JJ, Hulshoff HE, Ikeda M, Jahanshad N, Jernigan T, Jockwitz C, Johansson S, Jonsdottir GA, Jönsson EG, Kahn R, Kaufmann T, Kelly S, Kikuchi M, Knowles EEM, Kolskår KK, Kwok JB, Hellard SL, Leu C, Liu J, Lundervold AJ, Lundervold A, Martin NG, Mather K, Mathias SR, McCormack M, McMahon KL, McRae A, Milaneschi Y, Moreau C, Morris D, Mothersill D, Mühleisen TW, Murray R, Nordvik JE, Nyberg L, Olde Loohuis LM, Ophoff R, Paus T, Pausova Z, Penninx B, Peralta JM, Pike B, Prieto C, Pudas S, Quinlan E, Quintana DS, Reinbold CS, Marques TR, Reymond A, Richard G, Rodriguez-Herreros B, Roiz-Santiañez R, Rokicki J, Rucker J, Sachdev P, Sanders AM, Sando SB, Schmaal L, Schofield PR, Schork AJ, Schumann G, Shin J, Shumskaya E, Sisodiya S, Steen VM, Stein DJ, Steinberg S, Strike L, Teumer A, Thalamuthu A, Tordesillas-Gutierrez D, Turner J, Ueland T, Uhlmann A, Ulfarsson MO, van 't Ent D, van der Meer D, van Haren NEM, Vaskinn A, Vassos E, Walters GB, Wang Y, Wen W, Whelan CD, Wittfeld K, Wright M, Yamamori H, Zayats T, Agartz I, Westlye LT, Jacquemont S, Djurovic S, Stefánsson H, Stefánsson K, Thompson P, and Andreassen OA
- Abstract
Prior to and following the publication of this article the authors noted that the complete list of authors was not included in the main article and was only present in Supplementary Table 1. The author list in the original article has now been updated to include all authors, and Supplementary Table 1 has been removed. All other supplementary files have now been updated accordingly. Furthermore, in Table 1 of this Article, the replication cohort for the row Close relative in data set, n (%) was incorrect. All values have now been corrected to 0(0%). The publishers would like to apologise for this error and the inconvenience it may have caused.
- Published
- 2020
- Full Text
- View/download PDF
3. Dose response of the 16p11.2 distal copy number variant on intracranial volume and basal ganglia.
- Author
-
Sønderby IE, Gústafsson Ó, Doan NT, Hibar DP, Martin-Brevet S, Abdellaoui A, Ames D, Amunts K, Andersson M, Armstrong NJ, Bernard M, Blackburn N, Blangero J, Boomsma DI, Bralten J, Brattbak HR, Brodaty H, Brouwer RM, Bülow R, Calhoun V, Caspers S, Cavalleri G, Chen CH, Cichon S, Ciufolini S, Corvin A, Crespo-Facorro B, Curran JE, Dale AM, Dalvie S, Dazzan P, de Geus EJC, de Zubicaray GI, de Zwarte SMC, Delanty N, den Braber A, Desrivières S, Donohoe G, Draganski B, Ehrlich S, Espeseth T, Fisher SE, Franke B, Frouin V, Fukunaga M, Gareau T, Glahn DC, Grabe H, Groenewold NA, Haavik J, Håberg A, Hashimoto R, Hehir-Kwa JY, Heinz A, Hillegers MHJ, Hoffmann P, Holleran L, Hottenga JJ, Hulshoff HE, Ikeda M, Jahanshad N, Jernigan T, Jockwitz C, Johansson S, Jonsdottir GA, Jönsson EG, Kahn R, Kaufmann T, Kelly S, Kikuchi M, Knowles EEM, Kolskår KK, Kwok JB, Hellard SL, Leu C, Liu J, Lundervold AJ, Lundervold A, Martin NG, Mather K, Mathias SR, McCormack M, McMahon KL, McRae A, Milaneschi Y, Moreau C, Morris D, Mothersill D, Mühleisen TW, Murray R, Nordvik JE, Nyberg L, Olde Loohuis LM, Ophoff R, Paus T, Pausova Z, Penninx B, Peralta JM, Pike B, Prieto C, Pudas S, Quinlan E, Quintana DS, Reinbold CS, Marques TR, Reymond A, Richard G, Rodriguez-Herreros B, Roiz-Santiañez R, Rokicki J, Rucker J, Sachdev P, Sanders AM, Sando SB, Schmaal L, Schofield PR, Schork AJ, Schumann G, Shin J, Shumskaya E, Sisodiya S, Steen VM, Stein DJ, Steinberg S, Strike L, Teumer A, Thalamuthu A, Tordesillas-Gutierrez D, Turner J, Ueland T, Uhlmann A, Ulfarsson MO, van 't Ent D, van der Meer D, van Haren NEM, Vaskinn A, Vassos E, Walters GB, Wang Y, Wen W, Whelan CD, Wittfeld K, Wright M, Yamamori H, Zayats T, Agartz I, Westlye LT, Jacquemont S, Djurovic S, Stefánsson H, Stefánsson K, Thompson P, and Andreassen OA
- Subjects
- Adult, Autism Spectrum Disorder genetics, Brain pathology, Chromosome Deletion, Chromosome Duplication, Chromosomes, Human, Pair 16 genetics, Databases, Factual, Female, Globus Pallidus pathology, Humans, Image Processing, Computer-Assisted methods, Magnetic Resonance Imaging methods, Male, Middle Aged, Neurodevelopmental Disorders genetics, Organ Size genetics, Putamen pathology, Schizophrenia genetics, Autistic Disorder genetics, Basal Ganglia pathology, Chromosome Disorders genetics, DNA Copy Number Variations genetics, Intellectual Disability genetics
- Abstract
Carriers of large recurrent copy number variants (CNVs) have a higher risk of developing neurodevelopmental disorders. The 16p11.2 distal CNV predisposes carriers to e.g., autism spectrum disorder and schizophrenia. We compared subcortical brain volumes of 12 16p11.2 distal deletion and 12 duplication carriers to 6882 non-carriers from the large-scale brain Magnetic Resonance Imaging collaboration, ENIGMA-CNV. After stringent CNV calling procedures, and standardized FreeSurfer image analysis, we found negative dose-response associations with copy number on intracranial volume and on regional caudate, pallidum and putamen volumes (β = -0.71 to -1.37; P < 0.0005). In an independent sample, consistent results were obtained, with significant effects in the pallidum (β = -0.95, P = 0.0042). The two data sets combined showed significant negative dose-response for the accumbens, caudate, pallidum, putamen and ICV (P = 0.0032, 8.9 × 10
-6 , 1.7 × 10- 9 , 3.5 × 10-12 and 1.0 × 10-4 , respectively). Full scale IQ was lower in both deletion and duplication carriers compared to non-carriers. This is the first brain MRI study of the impact of the 16p11.2 distal CNV, and we demonstrate a specific effect on subcortical brain structures, suggesting a neuropathological pattern underlying the neurodevelopmental syndromes.- Published
- 2020
- Full Text
- View/download PDF
4. Depressive disorder moderates the effect of the FTO gene on body mass index.
- Author
-
Rivera M, Cohen-Woods S, Kapur K, Breen G, Ng MY, Butler AW, Craddock N, Gill M, Korszun A, Maier W, Mors O, Owen MJ, Preisig M, Bergmann S, Tozzi F, Rice J, Rietschel M, Rucker J, Schosser A, Aitchison KJ, Uher R, Craig IW, Lewis CM, Farmer AE, and McGuffin P
- Subjects
- Adult, Aged, Alpha-Ketoglutarate-Dependent Dioxygenase FTO, Case-Control Studies, Depressive Disorder, Major complications, Depressive Disorder, Major physiopathology, Female, Genetic Predisposition to Disease genetics, Genetic Predisposition to Disease psychology, Genotype, Humans, Male, Middle Aged, Obesity complications, Obesity physiopathology, Body Mass Index, Depressive Disorder, Major genetics, Obesity genetics, Polymorphism, Single Nucleotide physiology, Proteins genetics, Proteins physiology
- Abstract
There is evidence that obesity-related disorders are increased among people with depression. Variation in the FTO (fat mass and obesity associated) gene has been shown to contribute to common forms of human obesity. This study aimed to investigate the genetic influence of polymorphisms in FTO in relation to body mass index (BMI) in two independent samples of major depressive disorder (MDD) cases and controls. We analysed 88 polymorphisms in the FTO gene in a clinically ascertained sample of 2442 MDD cases and 809 controls (Radiant Study). In all, 8 of the top 10 single-nucleotide polymorphisms (SNPs) showing the strongest associations with BMI were followed-up in a population-based cohort (PsyCoLaus Study) consisting of 1292 depression cases and 1690 controls. Linear regression analyses of the FTO variants and BMI yielded 10 SNPs significantly associated with increased BMI in the depressive group but not the control group in the Radiant sample. The same pattern was found in the PsyCoLaus sample. We found a significant interaction between genotype and affected status in relation to BMI for seven SNPs in Radiant (P<0.0057), with PsyCoLaus giving supportive evidence for five SNPs (P-values between 0.03 and 0.06), which increased in significance when the data were combined in a meta-analysis. This is the first study investigating FTO and BMI within the context of MDD, and the results indicate that having a history of depression moderates the effect of FTO on BMI. This finding suggests that FTO is involved in the mechanism underlying the association between mood disorders and obesity.
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.