4 results on '"Glen C, Ulett"'
Search Results
2. Rapid Bladder Interleukin-10 Synthesis in Response to Uropathogenic Escherichia coli Is Part of a Defense Strategy Triggered by the Major Bacterial Flagellar Filament FliC and Contingent on TLR5
- Author
-
Dhruba Acharya, Matthew J. Sullivan, Benjamin L. Duell, Kelvin G. K. Goh, Lahiru Katupitiya, Dean Gosling, Michelle N. Chamoun, Asha Kakkanat, Debasish Chattopadhyay, Michael Crowley, David K. Crossman, Mark A. Schembri, and Glen C. Ulett
- Subjects
flagella ,urinary tract infection ,uropathogenic Escherichia coli ,Microbiology ,QR1-502 - Abstract
ABSTRACT Urinary tract infection (UTI) caused by uropathogenic Escherichia coli (UPEC) engages interleukin-10 (IL-10) as an early innate immune response to regulate inflammation and promote the control of bladder infection. However, the mechanism of engagement of innate immunity by UPEC that leads to elicitation of IL-10 in the bladder is unknown. Here, we identify the major UPEC flagellar filament, FliC, as a key bacterial component sensed by the bladder innate immune system responsible for the induction of IL-10 synthesis. IL-10 responses of human as well as mouse bladder epithelial cell-monocyte cocultures were triggered by flagella of three major UPEC representative strains, CFT073, UTI89, and EC958. FliC purified to homogeneity induced IL-10 in vitro and in vivo as well as other functionally related cytokines, including IL-6. The genome-wide innate immunological context of FliC-induced IL-10 in the bladder was defined using RNA sequencing that revealed a network of transcriptional and antibacterial defenses comprising 1,400 genes that were induced by FliC. Of the FliC-responsive bladder transcriptome, altered expression of il10 and 808 additional genes were dependent on Toll-like receptor 5 (TLR5), according to analysis of TLR5-deficient mice. Examination of the potential of FliC and associated innate immune signature in the bladder to boost host defense, based on prophylactic or therapeutic administration to mice, revealed significant benefits for the control of UPEC. We conclude that detection of FliC through TLR5 triggers rapid IL-10 synthesis in the bladder, and FliC represents a potential immune modulator that might offer benefit for the treatment or prevention of UPEC UTI. IMPORTANCE Interleukin-10 is part of the immune response to urinary tract infection (UTI) due to E. coli, and it is important in the early control of infection in the bladder. Defining the mechanism of engagement of the immune system by the bacteria that enables the protective IL-10 response is critical to exploring how we might exploit this mechanism for new infection control strategies. In this study, we reveal part of the bacterial flagellar apparatus (FliC) is an important component that is sensed by and responsible for induction of IL-10 in the response to UPEC. We show this response occurs in a TLR5-dependent manner. Using infection prevention and control trials in mice infected with E. coli, this study also provides evidence that purified FliC might be of value in novel approaches for the treatment of UTI or in preventing infection by exploiting the FliC-triggered bladder transcriptome.
- Published
- 2019
- Full Text
- View/download PDF
3. A Novel Protective Vaccine Antigen from the Core Escherichia coli Genome
- Author
-
Danilo G. Moriel, Lendl Tan, Kelvin G. K. Goh, Minh-Duy Phan, Deepak S. Ipe, Alvin W. Lo, Kate M. Peters, Glen C. Ulett, Scott A. Beatson, and Mark A. Schembri
- Subjects
Escherichia coli ,vaccines ,virulence factors ,Microbiology ,QR1-502 - Abstract
ABSTRACT Escherichia coli is a versatile pathogen capable of causing intestinal and extraintestinal infections that result in a huge burden of global human disease. The diversity of E. coli is reflected by its multiple different pathotypes and mosaic genome composition. E. coli strains are also a major driver of antibiotic resistance, emphasizing the urgent need for new treatment and prevention measures. Here, we used a large data set comprising 1,700 draft and complete genomes to define the core and accessory genome of E. coli and demonstrated the overlapping relationship between strains from different pathotypes. In combination with proteomic investigation, this analysis revealed core genes that encode surface-exposed or secreted proteins that represent potential broad-coverage vaccine antigens. One of these antigens, YncE, was characterized as a conserved immunogenic antigen able to protect against acute systemic infection in mice after vaccination. Overall, this work provides a genomic blueprint for future analyses of conserved and accessory E. coli genes. The work also identified YncE as a novel antigen that could be exploited in the development of a vaccine against all pathogenic E. coli strains—an important direction given the high global incidence of infections caused by multidrug-resistant strains for which there are few effective antibiotics. IMPORTANCE E. coli is a multifaceted pathogen of major significance to global human health and an important contributor to increasing antibiotic resistance. Given the paucity of therapies still effective against multidrug-resistant pathogenic E. coli strains, novel treatment and prevention strategies are urgently required. In this study, we defined the core and accessory components of the E. coli genome by examining a large collection of draft and completely sequenced strains available from public databases. This data set was mined by employing a reverse-vaccinology approach in combination with proteomics to identify putative broadly protective vaccine antigens. One such antigen was identified that was highly immunogenic and induced protection in a mouse model of bacteremia. Overall, our study provides a genomic and proteomic framework for the selection of novel vaccine antigens that could mediate broad protection against pathogenic E. coli.
- Published
- 2016
- Full Text
- View/download PDF
4. Cellular Management of Zinc in Group B Streptococcus Supports Bacterial Resistance against Metal Intoxication and Promotes Disseminated Infection
- Author
-
Glen C. Ulett, Kelvin G. K. Goh, and Matthew J. Sullivan
- Subjects
czcD ,bacterial pathogenesis ,Transcription, Genetic ,Arginine ,Mutant ,metallobiology ,Virulence ,medicine.disease_cause ,Microbiology ,Cell Line ,Streptococcus agalactiae ,Mice ,03 medical and health sciences ,Stress, Physiological ,Streptococcal Infections ,medicine ,Animals ,Humans ,Molecular Biology ,Pathogen ,Gene ,030304 developmental biology ,zinc efflux ,0303 health sciences ,biology ,030306 microbiology ,Chemistry ,Gene Expression Profiling ,Membrane Transport Proteins ,metal ions ,Gene Expression Regulation, Bacterial ,U937 Cells ,biology.organism_classification ,QR1-502 ,Mice, Inbred C57BL ,Zinc ,Response regulator ,Metals ,Efflux ,Bacteria ,Research Article - Abstract
Zinc (Zn) is an essential trace element for normal bacterial physiology but divergently, can intoxicate bacteria at high concentrations. Here, we define the molecular systems for Zn detoxification in Streptococcus agalactiae, also known as group B Streptococcus, and examine the effects of resistance to Zn stress on virulence. We compared the growth of wild-type bacteria and mutants deleted for the Zn exporter, czcD, and the response regulator, sczA, using Zn-stress conditions in vitro. Macrophage antibiotic protection assays and a mouse model of disseminated infection were used to assess virulence. Global bacterial transcriptional responses to Zn stress were defined by RNA-sequencing and qRTPCR. czcD and sczA enabled S. agalactiae to survive Zn stress, with the putative CzcD efflux system activated by SczA. Additional genes activated in response to Zn stress encompassed divalent cation transporters that contribute to regulation of Mn and Fe homeostasis. In vivo, the czcD-sczA Zn-management axis supported virulence in the blood, heart, liver and bladder. Additionally, several genes not previously linked to Zn stress in any bacterium, including most notably, arcA for arginine deamination also mediated resistance to Zn stress; representing a novel molecular mechanism of bacterial resistance to metal intoxication. Taken together, these findings show that S. agalactiae responds to Zn stress by sczA regulation of czcD, with additional novel mechanisms of resistance supported by arcA, encoding arginine deaminase. Cellular management of Zn stress in S. agalactiae supports virulence by facilitating bacterial survival in the host during systemic infection.Importance StatementStreptococcus agalactiae, also known as group B streptococcus, is an opportunistic pathogen that causes various diseases in humans and animals. This bacterium has genetic systems that enable Zinc (Zn) detoxification in environments of metal stress, but these systems remain largely undefined. Using a combination of genomic, genetic and cellular assays we show that this pathogen controls Zn export through CzcD to manage Zn stress, and utilizes a system of arginine deamination never previously linked to metal stress responses in bacteria to survive metal intoxication. We show that these systems are crucial for survival of S. agalactiae in vitro during Zn stress and also enhance virulence during systemic infection in mice. These discoveries establish new molecular mechanisms of resistance to metal intoxication in bacteria; we suggest these mechanisms are likely to operate in other bacteria as a way to sustain microbial survival in conditions of metal stress, including in host environments.
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.