1. Accelerated Nano-Optical Imaging through Sparse Sampling.
- Author
-
Fu M, Xu S, Zhang S, Ruta FL, Pack J, Mayer RA, Chen X, Moore SL, Rizzo DJ, Jessen BS, Cothrine M, Mandrus DG, Watanabe K, Taniguchi T, Dean CR, Pasupathy AN, Bisogni V, Schuck PJ, Millis AJ, Liu M, and Basov DN
- Abstract
The integration time and signal-to-noise ratio are inextricably linked when performing scanning probe microscopy based on raster scanning. This often yields a large lower bound on the measurement time, for example, in nano-optical imaging experiments performed using a scanning near-field optical microscope (SNOM). Here, we utilize sparse scanning augmented with Gaussian process regression to bypass the time constraint. We apply this approach to image charge-transfer polaritons in graphene residing on ruthenium trichloride (α-RuCl
3 ) and obtain key features such as polariton damping and dispersion. Critically, nano-optical SNOM imaging data obtained via sparse sampling are in good agreement with those extracted from traditional raster scans but require 11 times fewer sampled points. As a result, Gaussian process-aided sparse spiral scans offer a major decrease in scanning time.- Published
- 2024
- Full Text
- View/download PDF