1. Hierarchical Assembly of Plasmonic Nanoparticle Heterodimer Arrays with Tunable Sub-5 nm Nanogaps.
- Author
-
Li J, Deng TS, Liu X, Dolan JA, Scherer NF, and Nealey PF
- Abstract
Nanoparticle assemblies have generated intense interest because of their novel optical, electronic, and magnetic properties that open up numerous opportunities in fundamental and applied nanophotonics, -electronics, and -magnetics. However, despite the great scientific and technological potential of these structures, it remains an outstanding challenge to reliably fabricate such assemblies with both nanometer-level structural control and precise spatial arrangements on a macroscopic scale. It is the combination of these two features that is key to realizing nanoparticle assemblies' potential, particular for device applications. To address this challenge, we propose a hierarchical assembly approach consisting of both template-particle and particle-particle interactions, whereby the former ensures precise addressability of assemblies on a surface and the latter provides nanometer-level structural control. Template-particle interactions are harnessed via chemical-pattern-directed assembly, and the particle-particle interactions are controlled using DNA-directed self-assembly. To demonstrate the potential of this hierarchical assembly approach, we demonstrate the fabrication of a particularly fascinating assembly: the nanoparticle heterodimer, which possesses a surprisingly rich set of plasmonic properties and is a promising candidate to enable a variety of imaging and sensing applications. Each heterodimer is placed on the surface at predetermined locations, and the precise control of the nanogaps is confirmed by far-field scattering measurements of individual dimers. We further demonstrate that the gap size can be effectively tuned by varying the DNA length. By correlating measured spectra with finite-difference time-domain (FDTD) simulations, we determine the gap sizes to be 4.2 and 5.0 nm-with subnm deviation-for the two DNA lengths investigated. This is one of the best gap uniformities ever demonstrated for surface-bound nanoparticle assemblies. The estimated surface-enhanced Raman scattering (SERS) enhancement factor of these heterodimers is on the order of 10
5 -106 with high reproducibility and predictable polarization-dependence. This hierarchical fabrication technique-employing both template-particle and particle-particle interactions-constitutes a novel platform for the realization of functional nanoparticle assemblies on surfaces and thereby creates new opportunities to implement these structures in a variety of applications.- Published
- 2019
- Full Text
- View/download PDF