1. Nanoelectromechanical Control of Spin-Photon Interfaces in a Hybrid Quantum System on Chip.
- Author
-
Clark G, Raniwala H, Koppa M, Chen K, Leenheer A, Zimmermann M, Dong M, Li L, Wen YH, Dominguez D, Trusheim M, Gilbert G, Eichenfield M, and Englund D
- Abstract
Color centers (CCs) in nanostructured diamond are promising for optically linked quantum technologies. Scaling to useful applications motivates architectures meeting the following criteria: C1 individual optical addressing of spin qubits; C2 frequency tuning of spin-dependent optical transitions; C3 coherent spin control; C4 active photon routing; C5 scalable manufacturability; and C6 low on-chip power dissipation for cryogenic operations. Here, we introduce an architecture that simultaneously achieves C1-C6. We realize piezoelectric strain control of diamond waveguide-coupled tin vacancy centers with ultralow power dissipation necessary. The DC response of our device allows emitter transition tuning by over 20 GHz, combined with low-power AC control. We show acoustic spin resonance of integrated tin vacancy spins and estimate single-phonon coupling rates over 1 kHz in the resolved sideband regime. Combined with high-speed optical routing, our work opens a path to scalable single-qubit control with optically mediated entangling gates.
- Published
- 2024
- Full Text
- View/download PDF